
A Multivariate Generalization of theMarkov Switching Modelwith an application to volatility clustersby Mohamad KHALEDParis School of Economics and University of Paris I Panthéon-SorbonneJob Market PaperSeptember 2008AbstractI present a multivariate generalization of the simple markov-switching model.I allow for the introduction of several latent processes that have a simpleparametric distribution. The matrix-variate bernoulli distribution yields a�exible yet parsimonious pattern of dependence between the di�erent latentprocesses while preserving the markovian property. I derive several analyticresults and show how to compute quantities such marginal and conditionaldistributions. I also show how to estimate the model in the bayesian frame-work and give several examples.I then apply the approach to multivariate volatility clustering models. Inthe usual approaches to the problem, volatility clusters need either occursimultaneously in di�erent series or be completely independent across thoseseries. Contrary to those approaches, the framework in the paper allows for arich pattern of dependence in the volatility clusters taking place across dif-ferent variables.
1 IntroductionThe markov-switching regression model has proved to be a useful tool in econo-metrics over the past two decades. Generalizations of the model to the multi-variate case have been undertaken in several papers (see for instance[Krolzig, 1997] and [Sims and Zha, 2006].) However, there are several shortcom-ings of the current literature of multivariate markov-switching models. Forinstance, the usual generalizations either assume the existence of a single rudi-mentary latent process underlying the model or suppose some simple way of com-bining di�erent latent processes such as assuming they are independent.Before discussing the econometric aspects of those details, I shall give someeconomic motivation that justi�es addressing those shortcomings. Let us considera cornerstone of markov-switching models in econometrics and study its implica-tions in the multivariate setting. The GDP growth model of the seminal paper1



[Hamilton, 1989] formulates a markov-switching model in which the mean of theGDP growth autoregressive process is time-varying. There are two states, each ofwhich corresponds respectively to each one of the two-values �1 and �2 assumedby the time-varying mean with �1 < �2. The standard economic interpretation isthat one state (say that corresponding to �1) represents economic recessions andthe other one corresponds to economic expansions. One observes that the dura-tion of the recession state is smaller than that of the expansion state. Now con-sider going to the multivariate setting and taking a vector of country GDP growthseries, say, the U.S., Canada and France. On one hand, an economist thinkingabout each individual country's expansion and recession states might think ofthem as occurring simultaneously with high probability due to the inter-connec-tion of their economies, that is, due to close economic ties between say the U.S.and Canada, recessions are likely to hit both countries at the same time. On theother hand, the same economist can not exclude that some recessions might occurin some countries and not others, that they might last less in one country thananother or that there might exist some delay e�ects. For instance, one mightthink that recessions occur more often simultaneously in the U.S. and Canadathan in the U.S. and France. Turning back to the multivariate markov switchingmodel, it is di�cult to think of an easy way of incorporating those features in it.If one wants to be �exible, one should consider a binary latent variable for eachcountry. This will create a markov-switching model with a total of 23 = 8 states(that is, respectively for the U.S.-Canada-France, the states expansion-expansion-recession, expansion-recession-expansion, expansion-expansion-expansion etc...)).This is quite unwieldy and moreover there is a total of 22�3 � 23 = 56 transitionprobability parameters to estimate. Those parameters are very di�cult to inter-pret and it is their estimation that will characterize the simultaneity and durationfeatures of those states. One common assumption used in multivariate markov-switching models but that is completely absurd from an economic point of view isto assume those latent variables to be independent. That will greatly reduce thenumber of parameters, make the interpretation easier, but to say that a recessionin the U.S. is completely independent of a recession in Canada will be immedi-ately rejected by any economist with a common sense. A third solution that isoften used is to simplify the model by supposing a common latent process andtherefore forcing recessions to occur all at the same time in all countries. Thiseconomic framework is described in more technical terms in appendix C.The model that I propose will solve all problems exposed above with no loss in�exibility and with great parsimony. First, the number of parameters in myframework grows at the rate O(m2) and not at the prohitive rate O�22m� men-tioned above. The economist will get parameters that are meaningful and easy tointerpret and further utilize from an economic perspective, that is, there will beparameters that describe the strength of simultaneity of recession occurrencesbetween each pairs of country. In other words, he will not have to rely on thecomplex transition parameters mentioned earlier to study this phenomenon butrather refer to formulating some immediately interpretable parameters character-izing the dependence structure of the latent variables. This will be explored inmore details in the next sections.
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As another possible economic application, consider modeling �nancial returnsseries. A �nancial economist might consider a markov-switching model for thereturns series of a given �nancial asset whereby he studies the time-varying natureof the series variance. Volatility clusters are a natural phenomenon for returnsseries. The variance seems to take a jump up suddenly, stays high for a while,takes a jump down, stays low for a while and so forth. I shall call those formsvolatility clusters. This could naturally be described by a markov-switching modelon the returns series with a time-varying volatility. The episodes of sustainedpeaks of volatility are often attributed to a more volatile economic environment. Ishall simply refer to those states as ones of �high speculation� in an obvious abuseof language. When going to the multivariate setting, that is considering several�nancial assets at the same time, a �nancial economist might be interested indescribing the nature of occurrence of volatility clusters across di�erent assets.Volatility clusters occurring simultaneously in di�erent markets can describe spill-over e�ects and �nancial contamination as investors behave similarly in thosemarkets. At the same time, very di�erent �nancial assets might display di�erentbehaviors when it comes to volatility clusters. This is a natural application wheretraditional multivariate markov-switching models usually face great di�cultiesand where my multivariate frameworks will �nd a natural simple illustrativeapplication. I consider this in more details in section 4 and illustrate with realdata in section 5.The main contributions of the paper are the following. I formulate a new mul-tivariate markov-switching model that is �exible and parsimonious and �ll a gapin the multivariate-switching literature. The model relies on a parametric struc-ture of the latent variables that is di�cult to handle and that is known as thematrix-variate bernoulli distribution. I derive new results concerning the constantof integration of the matrix-variate bernoulli distribution and several marginaland conditional distributions in closed form which will make possible inferenceboth from the frequentist and bayesian perspectives. I illustrate with an applica-tion to multivariate volatility clusters and concentrate on bayesian inference.2 The ModelI consider here a multivariate generalization of the markov-switching model takingthe following form ( ytjxt � f(�zt)Z =(z1;� ;zT)0 � MB(�;�)In the �rst equation yt is a vector of dependent variables, xt is a vector of covari-ates and zt is an m � 1 vector of binary latent variables. � is a p � 1 vector ofparameters. Notice that � is indexed by zt, which means here that � takes asmany di�erent values as zt can take. Since zt is an m-dimensional vector ofbinary variables, there are therefore 2m di�erent vectors of parameters �zt. The�rst equation can be considered as the measurement or observation equation in astate-space model setting.
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The second equation, Z is a T � m matrix where the t-th row contains zt. Zis the matrix of latent variables and is distributed as �rst order markov matrix-variate bernoulli with parameter matrices � and �. More details on this willcome in the next section. The parameter matrices � and � characterize thedependence structure of the latent variables. In a state-space model setting, thesecond equation can be considered as the law of motion or state equation.The econometrician who uses that model start with a given parametric mod-eling framework ytjxt � f(�) and generalizes it by making some or all of theparameters in � time-varying. An interesting feature is that, due to zt being mul-tivariate, subsets of the parameters vector � can be made to be time-varying dif-ferently from other subsets. We shall illustrate this unique feature with severalexamples.Example 1. As a simple illustrative example that should clarify the notation,take m= 2, p=3 and �= ( ; �; �)0. zt can take here four di�erent values for eachtime period t, that is (0; 0)0, (0; 1)0, (1; 0)0 and (1; 1) 0. In this example, we decideto make the latent variables index � and � separately without indexing  . zt;1and zt;2 indexes � and �. Here, there are the di�erent values allowed herezt �zt(0; 0)0 ( ; �1; �1)0(0; 1)0 ( ; �1; �2)0(1; 0)0 ( ; �2; �1)0(1; 1)0 ( ; �2; �1)0The previous example shows the �exibility that is allowed by our model. Othermodels could have been also allowed such that making zt;1 index both  and �and zt;2 index �, or making zt;1 index both  and � and zt;2 index �.m and the di�erent possible con�gurations are chosen by the econometricianto conform with his modeling decisions.An important special case multivariate markov-switching model is the multi-variate regressions special case. This takes the following form8<: yt=xt:�zt+ututsN (0;�zt)where in that case � = (�; vech(�)) and ut is an error term de�ned as the di�er-ence between yt and xt:�zt. Two important examples that belong to that specialcase of models are the following.Example 2. Regression coe�cients and error variance that are sepa-rately switching
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This is a very simple illustrative problemyt=xt:�zt;1+�zt;2:"t"t�N (0; 1)� and � depend on two di�erent latent chains z1;t and z2;t that are dependent.Conditional on Z = (z1; � ; zT)0, the problem simpli�es to the heteroscedasticregression model yt=xt:(1� zt;1):�1+xt:zt;1:�2+utu=(u1;� ; uT)0�N (0;
)
= diag(!1;� ; !T)!t=h(zt;2; �12; �22)= �12:(1� zt;2)+ �22:zt;2To see how to implement the part of the Gibbs sampler that conditions on Z, seee.g. [Bauwens et al., 1999] and [Koop, 2003].In the next example, the latent variables con�guration in the sense that eachlatent underlies a single equation in the system of equations of the multivariateregression model.Example 3. A multivariate regression model with a di�erent chainunderlying each equation.� yt;1 yt;2 yt;3 �=xt:� �1;zt;1 �2;zt;2 �3;zt;3 �+ututsN0B@0;0B@ �1;zt;120 �2;zt;220 0 �3;zt;32 1CA1CAone can think of the system as a collection of univariate markov-switching regres-sions depending each on a distinct latent process zi;t for i = 1; � ; 3. The latentprocesses are correlated each one with another and moreover, the residuals fromthe di�erent regressions are not independent.I can also consider a model where the covariances are not zeros.utsN0B@0;0B@ �1;zt;12�21 �2;zt;22�31 �32 �3;zt;32 1CA1CAIn the next section, I will study the �rst-order markov matrix-variate bernoullidistribution and its use for describing the structure of the latent variables. Weshall also derive several results that will prove essential for inference purposes.
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3 The probability structure of the latent processesIn this section, I describe in detail the way to construct the joint distribution ofthe latent processes. Subsection 3.1 reviews the matrix-variate bernoulli distribu-tion as introduced in [Lovison, 2006]. In subsection 3.2, I introduce our conceptof �augmented kernel vector�. That concept is crucial since it is going to allow usto easily prove several of our results here and it will allow us the possibility ofcompactly and neatly writing several of our results.3.1 The matrix-variate bernoulli distributionThis subsection quickly reviews the paper of [Lovison, 2006] in which the matrix-variate bernoulli distribution was introduced. We then present those aspects ofthe distribution that we will require for our modeling of the markov-switchingmultivariate regression. Throughout the section, we will attempt to be as close aspossible to [Lovison, 2006]'s initial notation.As described earlier, we want to model m di�erent binary latent processes con-sisting each of T observation. Therefore, the typical random variable considered isa matrix Z of size T � m where each column of the matrix corresponds to a dif-ferent latent process. Throughout the paper, we will denote the t-th row of Z byzt for t=1;� ; T and we will denote the j-th column of Z by z(:;j) for j =1;� ; m.Equally, we will denote the (i; j)-th entry of Z by zi;j.The matrix-variate bernoulli distribution allows for di�erent patterns ofdependence. Those include dependence between di�erent variables (simplecolumn-wise dependence between, say, z(j;:) and z(j 0;:) for j 0 � j), dependencebetween di�erent periods in time (or, put di�erently, observational unit depen-dence between, say, zt;j and zs;j for s � t) and �nally mixed variable-unit depen-dence (say between zt;j and zs;j 0). In this paper, I will not address mixed variable-unit dependence.3.1.1 The density and dependence parametersThe density of Z is equal top(Z j	)= 1KT(	) :exp�vec(Z 0)0:	:vec(Z 0)	where 	 is a T m � T m matrix that contains the density parameters. KT(	) isthe integration constant that depends on 	 and that is given by the following for-mula KT(	)=0@Xk=12Tm exp�vec(Zk0)0:	:vec(Zk0)	1Awhere each Zk represent one possible Z matrix among all the 2Tm possible suchmatrices.The matrix 	 groups all the parameters that describe the dependence or asso-ciation structure of the di�erent zt;j random variables (for t = 1; � ; T and j =1; � ; m). Therefore, it has a very special structure that will be explicitly de�nedafter describing the di�erent dependence patterns allowed in the matrix-variatebernoulli distribution.
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The patterns of dependence allowed can be classi�ed in three categories. Thethree categories of parameters associated with each pattern will be given a dis-tinct notation each in order to distinguish between them� The parameters describing pure variable association�tj;j 0= �j;j 0;8tThose parameters describe the dependence between two di�erent variables,i.e. between two di�erent columns of Z.� The parameters describing pure unit (or observational) association�t;t0jWithin a single column of Z, say the j-th column, i.e the j-th variable,those parameters describe the dependence pattern between two di�erentrows t and t, i.e. two di�erent observations.� The parameters describing mixed unit-variable association�t;t0j;j 0The parameter �t;t0j;j 0 describes the dependence between the t-th observationof the j-th variable and the t0-th observation of the j 0-th variable. I.e., itdescribes the dependence between the (t; j)-th entry of Z and its (t 0; j 0)-thentry.In addition to the parameters describing patterns of dependence or association,we need some parameters that describe the within probabilistic structure of eachvariable or column of Z. I.e., more concretely, we need parameters that describethe 1� 0 frequency whiting each variable. For that, we use the parameters�tj= �j; 8tThe di�erence between parameters �j (a single index) and parameters �j;j 0 (twoindeces) is that �j characterizes the overall 0 � 1 pattern within variable j andthat �j;j 0 characterizes the overall contemporaneous (i.e for the same observationt) dependence between variables j and j 0.It is possible to tidy the presentation up by putting the parameters intomatrices. Let us introduce the following symmetric m�m matrices � and �t;t0�=0BB@ �1 �1;2 � �1;m�2 � �m 1CCA
�t;t0=�t0;t0 =0BBB@ �t;t01 �t;t01;2 � �t;t01;m�t;t02 
� 
�t;t0m 1CCCA
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Now, it is possible to de�ne the parameter matrix 	 of the matrix-variatebernoulli distribution as a function of � and the �t;t0s
	=0BBBBBB@ � �1;2 � �1;T�1 �1;T�2;1 � 
 �2;T
 
 � 
 

 
 
 
�T�1;1 
 � �T�1;T�T ;1 �T ;2 � �T ;T�1 �

1CCCCCCA= IT 
�+ Xt=1;t0� tT Et;t0
�t;t0
The Et;t0 matrices are such that all of their entries contain zeros except for the (t;t 0)th ones which contain a one.One can factor the likelihood p(Z j�; � ; �t;t0; � ) so as to write it in the fol-lowing form 1KT(�;� ;�t;t0;� )expftr[Z 0:Z:�]g Yt=1;t0� tT expftr[Z 0:Et;t0:Z:�t;t0]gAfter writing the likelihood in that form, we can immediately see that the quanti-ties Z 0:Zand each one of Z 0:Et;t0:Zare jointly su�cient statistics for � and each one of the �t;t0 respectively.As a matter of fact, we can describe the parameters by su�ciency. We aregoing to explain in further detail in subsection 3.1.4. We delay that interpretationbecause we are more interested in the special case of the �rst-order markov caseand in that case, the interpretation is simpler.Another possible interpretation is through the use of �conditional� log-oddsratios. This is quickly resumed in subsection 3.1.2.In this paper, I will only address the special case of the matrix-variatebernoulli distribution, that is the �rst-order markov case (that case was give as anexample in the paper of [Lovison, 2006]). Subsection 3.1.3 is totally devoted tothat task.For further details on those general parameterizations, see [Lovison, 2006] (ande.g. [Cox, 1972], [Zhao and Prentice, 1990] or [Cox and Wermuth, 1994]).3.1.2 �Conditional� log-odds ratio interpretation of the dependenceparametersOne sees from the de�nition of the dependence parameters that the distributionallows for pairwise interactions only. That might prove a formidable restriction incertain applications, but in our case, the distribution o�ers exactly what we need.
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The way each of those parameters is described is through the use of oddsratios. For instance �t;t0j;j 0 can be written as�t;t0j;j 0= log�P fzt;j=1; zt0;j 0=1g:P fzt;j=0; zt0;j 0=0gP fzt;j=1; zt0;j 0=0g:P fzt;j=0; zt0;j 0=1g�The probabilities in the log-odds ratios are conditional on the rest being zero.The �js are written as �tj= �j= log�P fzt;j=1gP fzt;j=0g�;8tand again the probabilities appearing in the fractions are conditional on the restbeing zero.Although conditional log odds ratios constitute a neat and elegant way ofinterpreting the dependence parameters, we prefer to use su�ciency for that pur-pose. In particular, since the distribution used by those log odds ratios is condi-tional on all the other entries in the matrix Z being set to zero, it might proveless useful in economic applications than the interpretation that relies on the con-cept su�ciency. We will explore that idea in more detail in subsection 3.1.4.3.1.3 The �rst-order markov caseNow I am going to illustrate the �rst-order markov special case. The density ofthe matrix-variate bernoulli distribution simpli�es greatly since, in order toaccount for temporal dependence of the �rst order, one will only need a singleparameter within each latent process only. That is, zt;j and zs;j will dependent ifand only if s = t + 1 for s > t. Therefore, the parameters re�ecting markoviandependence between units in each latent process are�t;sj =� �j if s= t+1 for s> t0 otherwiseOn the other hand, the contemporaneous dependence between latent process jand latent process j 0 will be captured by �j;j 0.Mixed dependence of the �rst order can also be allowed (i.e. dependence inone chain on past values of other chains)�t;t0j;j 0=( �j;j 0 if t 0= t+10 otherwiseHowever, for the purposes of our paper, I will set all mixed dependence parame-ters to zero.In matrix notation �i;i+1=�=0BBB@ �11 �11;2 � �11;m�12 
� 
�1m
1CCCA
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and since I set all mixed dependence parameters zero, the matrix � will be diag-onal �=0BBB@ �11 0 � 0�12 
� 
�1m 1CCCASimilarly, the matrix � is de�ned as in the general case�=0BB@ �1 �1;2 � �1;m�2 � �m 1CCATherefore, for the general notations of the matrix-variate bernoulli distribution,the general matrix containing all parameters can, as a result, been written as	= IT 
�+L1
�where L1 is a matrix containing ones on the �rst right o�-diagonalL1=0BBBB@ 0 1 0 � 00 0 1 � 0
 
 � � 
0 0 � 0 10 0 � 0 0
1CCCCAThe likelihood of the �rst order matrix-variate bernoulli distribution is thereforep(Z j�;�)= 1KT(�;�) :expftr[Z 0:Z:�] + tr[Z 0:L1:Z:�1]gwhere Z 0:Z and Z 0:L1:Z are the su�cient statistics for � and � respectively.I will hereafter refer to the �rst-order markov matrix-variate bernoulli distri-bution through the abbreviation FOMMVB.3.1.4 Interpretation of the dependence parametersThe formula for the joint density is all that one needs to interpret the parameters.Instead of interpreting the general case with m variables, I will explicitly write theunivariate and bivariate cases so as to shed some light on the distribution.In the univariate case, Z is of size T � 1 and its probability density function isgiven by p(Z j�; �)= 1KT(�; �) :exp "Xt=1T zt#:�+"Xt=2T zt:zt�1#:�!where one commonly writes zt;1 as zt and where Pt=1T zt2 = Pt=1T zt since zt isbinary.
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Here we see how � and � are de�ned by su�ciency. To estimate �, a su�cientstatistic ( Pt=1T zt) is the number of times the state labeled by 1 has occurred.Similarly, to estimate � a su�cient statistic (Pt=2T zt:zt�1) is the number of timesthe state labeled as one was followed in time by the same state, i.e. the number oftimes that 1 occurs consecutively in the column of the matrix is su�cient to esti-mate �.For the univariate case, the T � 2 matrix Z has the following densityp(Z j�1; �2; �1;2; �1; �2) = 1KT(�1; �2; �1;2; �1; �2)� exp "Xt=1T zt;1#:�1+"Xt=2T zt;1:zt�1;1#:�1+ "Xt=1T zt;2#:�2+"Xt=2T zt;2:zt�1;2#:�2+ "Xt=1T zt;1:zt;2#:�1;2!Here, the interpretation of (�1; �2; �1; �2) is the same as in the univariate case. Asfor �1;2, the interpretation is also given by su�ciency. The su�cient statistic forestimation �1;2 is Pt=1T zt;1:zt;2 which the number of times that the state labeledby 1 occurred simultaneously for both latent processes.3.2 Augmented kernel vectorThe main point is that, in order to compute several important quantities such asmarginal densities and such as the constant of integration, one needs to integrateover several elements of Z. Integration with respect to several elements of Z, e.g.with respect to zt, will yield a functional expression that is di�erent from thekernel of matrix-variate bernoulli distribution (i.e. the density without dividingby the constant of integration.) It turns out that it is possible to write, for eachdate t, a vector of size 2m which has the unique property that, if one somehowintegrates one of its entries with respect to zt, then we will obtain a linear combi-nation of the same vector at date t � 1. That is, those vectors of size 2m aresomehow �closed� to the integration operation. I will dub those vectors as �aug-mented kernel vectors�.Before writing the main result of the paper, I will try to justify the use of theterm kernel vector.The kernel (i.e. the density function without the normalizing constant) of theFOMMVB distribution is equal toexpftr[Z 0:Z:�] + tr[Z 0:L1:Z:�1]gIn less compact notation but one that might prove helpful for the purpose ofintroducing the concept, we can write the kernel asexp"Xi=1m yiT :�i+Xi=1m wiT :�i+2 Xi=1;j� im ui;jT :�i;j#
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where I introduced the following notationNotation 1. De�ne the following quantitiesyit,X�=1t z� ;iwit,X�=2t z� ;i:z��1;iui;jt ,X�=1t z� ;i:z� ;jObviously Z1:t0 :Z1:t0 =0BBBBB@ y1t � u1;it � u1;mt
 � 

 yit 

 � 
um;1t � � � ymt
1CCCCCAwhere Z1:t denote the �rst t rows of Z.We also have obviously thatZ1:t0 :L1:Z1:t=0BBBBB@ w1t � � � �� � � � 

 � wit � 

 � � � �� � � � wmt
1CCCCCAwhere of course L1 is of dimension t � t here and where the blanks � refers toterms that we would not need to de�ne since � is a diagonal matrix and we onlycare about the trace of Z1:t0 :L1:Z1:t:�.If one integrates the kernel with respect to zT , then we will obtain a linearcombination of exponential terms that do not have the same functional form asthe kernel (which it is itself an exponential term). The only di�erence are themultiplicands of the di�erent �i for i = 1; � ; m, that is, we will have expressionssuch as (zt;i+wit):�i for i=1;� ;Minside the exponential terms.In particular, we will prove that we will have 2m di�erent such terms.Moreover, there exists a one-to-one and onto mapping from the power set ofM into those terms. I will begin by providing the following de�nition.De�nition 1. Let us de�ne the setM,f1;� ;mgand its power set as P(M).
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De�ne the index function that maps each element of P(M) into the integer setf1;� ; 2mg %:P(M)� f1;� ; 2mgFor instance, one can map the null set into the integer 1, i.e. %(�) = 1, the setf1g into the integer 2, i.e. %(�)= 2 etc...Also, consider the row vector zt of size 1 �m. There are 2m di�erent possiblesuch vectors. De�ne that set as Z. Therefore, there exists a one-to-one and ontomapping from either the index set f1; � ; 2mg or the power set P(M) into the setZ. De�ne that mapping as C. C:Z� f1;� ; 2mgAs an example, suppose m=2 and zt=(0; 0), then we can consider that C(zt)= 1.Moreover, we can easily use %�1 � C and C�1 � % as one-to-one and onto map-pings between Z and P(M).It is important to be able to e�ciently construct one such mapping as C. Wewill show one such way in appendix B. Moreover, the algorithm given in appendixB will implicitly show how to undertake several of the numerical computationsassociated with the analytic ones exposed in the paper.Using the previous notation, we can, for instance, write the kernel of theFOMMVB as exp"Xi2M yiT :�i+wiT :�i+2: Xi2M;j� i2M ui;jT :�i;j#Now, let us create a 2m � 1 vector where each entry will be equal to one of thefunctional form that we introduced earlier.De�nition 2. De�ne the t-th (for t= 1;� ; T) augmented kernel vector t(Z),(simply referred to hereafter as t) as a 2m � 1 vector t where the j-th entry (fork=1;� ; 2m) is given byexp"Xi2M yit:�i+Xj2K �zt;j+wjt�:�j+ Xj2MnK wjt:�j+2 Xi2M;j� i2M ui;jt :�i;j#where k= %(K) and MnK is the complement of K in M.Equivalently, we could have introduced an alternative way of writing t(%(K))that is useful in the rest of paper and that is identical to the previous onet(%(K))= exp"Xi2M yit:�i+wit:�+Xj2K zt;j:�j+2: Xi2M;j� i2M ui;jt :�i;j#I will reintroduce some matrix notation here, which will make the subsequentexposition more compact.De�nition 3. De�ne a selector matrix Sj for j = 1; � ; 2m as an m � m matrixwhere the (i; k)-th entry is de�ned as�i;k:Ii2K
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where K = %�1(j), �i;k is kronecker's delta function and Ii2K is an indicator func-tion that is equal to 1 if i2K.Sj can also be de�ned as beingSj=diag(C�1(j))As an example of a selector matrix, if m=2, K= f1g and j= %(K)= 2 thenS3=� 1 00 0 �Now, in matrix notation, the j-th term of t will be given byexp(tr[Z1:t0 :Z1:t:�] + tr[Z1:t0 :L1:Z1:t:�] + tr[diag(zt):Sj:�])where j = %(K) for a given element K of P(M) and where Z1:t is the matrixformed by the �rst t rows of Z. Of course, the size of L1 was changed herebecause we only consider the �rst t rows of Z and the whole matrix Z. There-fore, L1 is now of dimension t� t instead of T �T .Using these notation, it is easy to see that the kernel of the distribution is the�rst element of T where 1 = %(�) and � is the null set (see appendix B to seehow � is mapped into 1). Moreover, the FOMMVB density is equal top(Z j�;�)= 1KT(�;�) :T(%(�))Now, a central result of the paper.Theorem 1. If one integrates any element of t with respect to zt, one willobtain a linear combination of t�1.Corollary 1. Xzt t=A:t�1where A= [a10 ;� ; aj0 ;� ; a2m0 ]0 and where we refer to coe�cients of the linear com-bination of t(j) as aj with j= %(K) for some K2M(P).Moreover the (p; q)-th entry of A isA(p; q)= exp"Xi2J �i+ Xj2K\J �j+2: Xi2J ;j� i2J �i;j#where p= %(K) and q= %(J ).As an illustrative simple example that will clarify some of the ideas, let us �rstconsider the univariate FOMMVB case. Since m= 1, the augmented kernel vectoris of size 2� 1 t=0B@ exp�hP�=1t z�i:�+ hP�=2t z�:z��1i:��exp�hP�=1t z�i:�+ hzt+P�=2t z�:z��1i:�� 1CA
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by using some earlier obvious notation, we can write t more compactly ast=� exp(yt:�+wt:�)exp(yt:�+ [zt+wt]:�) �Now, let us integrate t with respect to ztXzt t = Xzt � exp(yt:�+wt:�)exp(yt:�+ [zt+wt]:�) �= Xzt  exp��zt+ yt�1�:�+ �zt:zt�1+wt�1�:��exp��zt+ yt�1�:�+ �zt+ zt:zt�1+wt�1�:�� !=  exp��1+ yt�1�:�+ �zt�1+wt�1�:��+ exp�yt�1:�+wt�1:��exp��1+ yt�1�:�+ �1+ zt�1+wt�1�:��+ exp�yt�1:�+wt�1:�� !=  e�:exp�yt�1:�+ �zt�1+wt�1�:��+ exp�yt�1:�+wt�1:��e�+�:exp�yt�1:�+ �zt�1+wt�1�:��+ exp�yt�1:�+wt�1:�� !=  1 e�1 e�+� !: exp�yt�1:�+wt�1:��exp�yt�1:�+ �zt�1+wt�1�:�� != A:t�1Therefore A= 1 e�1 e�+� !This simple example shows that even in the univariate case, the analytic compu-tations might be quite complex.Now we speci�cally saw how the integration operation is carried out in prac-tice.To clarify the framework even further, we shall give the analytic results for thebivariate case. However, we will not show the details of the computations forproblem of space.Here m=2 and therefore each t is of dimension 4� 1.t=0BBB@ exp(y1t:�1+ y2t:�2+w1t:�1+w2t:�2+2ut:�12)exp(y1t:�1+ y2t:�2+ �zt;1+w1t�:�1+w2t:�2+2ut:�12)exp(y1t:�1+ y2t:�2+w1t:�1+ �zt;2+w2t�:�2+2ut:�12)exp(y1t:�1+ y2t:�2+ �zt;1+w1t�:�1+ �zt;2+w2t�:�2+2ut:�12) 1CCCAwhere, in an obvious notation, ut is actually u1;2t .As earlier, Pzt t = A:t�1 where the reader can verify that the matrix con-taining the coe�cients of the linear combination is given by0BBB@ 1 e�1 e�2 e�1+�2+2�121 e�1+�1 e�2 e�1+�2+2�12+�11 e�1 e�2+�2 e�1+�2+2�12+�21 e�1+�1 e�2+�2 e�1+�2+2�12+�1+�2 1CCCA
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3.3 Marginal distributionsIn this subsection, we are interested about marginal densities of the form p(z1; � ;zt) for t = 1; � ; T . Each one of those densities is obtained by integration overzt+1;� ;zT .We are interested about densities of that form because our goal is to describethe conditional distribution p(ztjzt�1). In subsection 3.5, we will show the markovproperty, i.e. p(ztjzt�1; � ; z1) = p(ztjzt�1). However, here, we will concentrate onthe quantity p(ztjzt�1;� ; z1)= p(z1;� ; zt�1;zt)p(z1;� ; zt�1)We see that the conditional distribution can be obtained by the ratios of twomarginal densities of the form p(z1; � ; zt) for t = 1; � ; T . Being able to writethose quantities in closed form will be helpful for the rest of the paper.Proposition 1. Each marginal density of the form p(z1; � ; zt) can be written asa linear combination of the augmented kernel vector t(Z) or t.p(z1;� ;zt)= bt0:t/KTwhere KT,KT(�;�) is the constant of integration of Z.Moreover, the coe�cients of the linear combination are given by the followingrecursion bt�1=A0:btwith the boundary condition bT =e1where e1 is the �rst column of the identity matrix I2m.3.4 The constant of integrationLet Zk denote one possible Z matrix among the 2Tm possible Z matrices thatcould have occurred. The constant of integration is then, as the reader remem-bers, will be equal to the sum of the kernel over all those 2Tm possibilities.KT(�;�)=Xk=12Tm expftr[Zk0:Zk:�] + tr[Zk0:L1:Zk:�1]gDoing the integration over all 2Tm possibilities is intractable in most practical sit-uations. However, since this integration can be carried out by integrating succes-sively over zt, we can resort to the augmented kernel vector in order to carry outthat integration.Proposition 2. The constant of integration can be obtained from the relationKT(�;�)=e10 :AT�1:�1with �1=Pk2m 1(k) with k= %(K) for some K2M(P)Corollary 2. The vector �t follows a �rst-order di�erence equation�t=A:�t�1

16 Section 3



with the initial condition �1 =Pk2m 1(k) =Pk=12m A(:;k) (i.e. the sum of columnsof A).The constant of integration of di�erent sample size is just the �rst element ofthat vector Kt(�;�)= e10 :�tNow we will illustrate with some simple examples.In the univariate case �1 = Xz1 1= Xz1 � exp(z1:�)exp(z1:�+ z1:�) �=  e�+1e�+�+1 !and therefore a sample of size 1 has the following integration constantK1(�; �) = e10 :�1= e�+1A sample of size two has the following integration constantK2(�; �) = e10 : 1 e�1 e�+� ! e�+1e�+�+1 != e10 : e2�+�+2e�+1e2�+2�+e�+�+e�+1 != e2�+�+2e�+1For instance K5(�; �) = e5�+4� + 2e4�+3� + 3e4�+2� + 3e3�+2� + 6e3�+� + 4e2�+� +e3�+6e2�+5e�+1.This gives an idea of the complexity of the computations and at the rate atwhich Kt(�; �). (This can be given by the spectral radius of A).For the bivariate case�1 = Xz1 1= Xz1 0BBB@ exp�z1;1:�1+ z1;2:�2+2z1;1:z1;2:�12�exp(z1;1:�1+ z1;2:�2+ z1;1:�1+2z1;1:z1;2:�12)exp(z1;1:�1+ z1;2:�2+ z1;2:�2+2z1;1:z1;2:�12)exp(z1;1:�1+ z1;2:�2+ z1;1:�1+ z1;2:�2+2z1;1:z1;2:�12)
1CCCA= 0BBB@ e�1+�2+2�12+e�1+e�2+1e�1+�2+2�12+�1+e�1+�1+e�2+1e�1+�2+2�12+�2+e�1+e�2+�2+1e�1+�2+2�12+�1+�2+e�1+�1+e�2+�2+1

1CCCA
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Remember that the integration over z1 is actually over (1; 1), (1; 0), (0,1) and (0;0). Therefore K1(�;�)= e�1+�2+2�12+e�1+e�2+1.SimilarlyK2(�;�) = e10 :A:�1= e10 :0BBB@ 1 e�1 e�2 e�1+�2+2�121 e�1+�1 e�2 e�1+�2+2�12+�11 e�1 e�2+�2 e�1+�2+2�12+�21 e�1+�1 e�2+�2 e�1+�2+2�12+�1+�2 1CCCA� 0BBB@ e�1+�2+2�12+e�1+e�2+1e�1+�2+2�12+�1+e�1+�1+e�2+1e�1+�2+2�12+�2+e�1+e�2+�2+1e�1+�2+2�12+�1+�2+e�1+�1+e�2+�2+1
1CCCA= e2�1+2�2+4�12+�1+�2+2e2�1+�2+2�12+�1+2e�1+2�2+2�12+�2+ e2�1+�1+e2�2+�2+2e�1+�2+2�12+2e�1+�2+2e�1+2e�2+1We will not give the result for K5(�;�) since it will take too many lines to writeit down.Now that we have the constant of integration in closed form, it is straightfor-ward to write the likelihood of the model in closed form.3.5 Transition probabilitiesAs already explained in subsection 3.3, computing marginal densities of the formp(z1;� ; zt) will easily yield the conditional distributionp(ztjzt�1;� ; z1)= p(z1;� ; zt�1;zt)p(z1;� ; zt�1)From that, we easily see thatp(ztjzt�1;� ;z1) = bt0:t/KTbt�10 :t�1/KT= bt0:tbt�10 :t�1And we already mentioned that p(ztjzt�1; � ; z1) = p(ztjzt�1). We shall easilyprove it!Proposition 3. zt is markovian, i.e. p(ztjzt�1;� ; z1) = p(ztjzt�1). Moreover, themarkov process formed by zt is non-homogeneous.In the previous proof, we explicitly computed the formula for the conditionaldensity p(ztjzt�1). We will summarize that in a proposition.Proposition 4. De�ne �t as a 2m� 1 vector whose j-th entry is given by�t(j)= exp(tr[zt0:zt:�] + tr[zt0:zt�1:�] + tr[diag(zt):Sj:�])where j= %(K) for the set K that is mapped into zt through %�1 � C.
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�t is a function of zt and zt�1 and can therefore be written as �t(zt�1; zt).Also, de�ne �t as a 2m� 1 vector whose j-th entry is given by�t(j)= exp(tr[diag(zt):Sj:�])where, again, j= %(K) for the set K that is mapped into zt through %�1 � C.�t is a function of zt and can therefore be written as �t(zt).Then the conditional density p(ztjzt�1) is given by the following formulap(ztjzt�1)= bt0:�t/bt�10 :�t�1Moreover, the 2m� 2m matrix of transition probabilities Pt contains at its (i; j)-thentry Pt(i; j)= bt0:�t(C�1(i); C�1(j))/bt�10 :�t�1(C�1(i))As a simple example, let us consider the univariate case.The two vectors �t and �t are respectively�t=� exp(zt:�+ zt:zt�1:�)exp(zt:�+(zt+ zt:zt�1):�) ��t=� 1exp(zt:�) �Using index notation over k = 1; � ; 2m, �t(1) = 1 and �t(2) = exp(zt:�). Using thenotation over Z, we see that �t(zt) = (1; exp(zt:�))0 and �t(zt�1; zt�1) = (exp(zt:�+zt:zt�1:�); exp(zt:�+(zt+ zt:zt�1):�)0.The conditional density p(ztjzt�1) is now given by the following formulap(ztjzt�1)= bt(1):exp(zt:�+ zt:zt�1:�)+ bt(2):exp(zt:�+(zt+ zt:zt�1):��bt�1(1)+ bt�1(2):exp(zt�1:�)Now, replacing zt and zt�1 by their possible binary values, we obtain a matrix oftransition probabilities of the following formPt=0BBB@ bt(1)+ bt(2)bt�1(1)+ bt�1(2) bt(1)+ bt(2)bt�1(1)+ bt�1(2):e�bt(1):e�+ bt(2):e�+�bt�1(1)+ bt�1(2) bt(1):e�+�+ bt(2):e�+2�bt�1(1)+ bt�1(2):e� 1CCCAwhere the con�guration in Pt is through our usual mappings, i.e. C(0) = 1 andC(1)=2.We can easily see that the rows sum to one after replacing the bt�1(:) coe�-cients as the corresponding linear combination of the bt(:) coe�cients.We can also give formulas for the bivariate case. We begin by writing the for-mulas for �t and �t�t=0BBB@ exp(zt;1:�1+ zt;2:�2+ zt;1:zt�1;1:�1+ zt;2:zt�1;2:�2+2zt;1:zt;2:�12)exp(zt;1:�1+ zt;2:�2+ [zt;1+ zt;1:zt�1;1]:�1+ zt;2:zt�1;2:�2+2zt;1:zt;2:�12)exp(zt;1:�1+ zt;2:�2+ zt;1:zt�1;1:�1+[zt;2+ zt;2:zt�1;2]:�2+2zt;1:zt;2:�12)exp(zt;1:�1+ zt;2:�2+ [zt;1+ zt;1:zt�1;1]:�1+ [zt;2+ zt;2:zt�1;2]:�2+2zt;1:zt;2:�12) 1CCCA
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and �t=0BBB@ 1exp(zt;1:�1)exp(zt;2:�2)exp(zt;1:�1+ zt;2:�2) 1CCCAWe will not give here explicitly the formulas for p(ztjzt�1) and Pt but it su�cesto say that Pt will have the following form
Pt= zt�1 (0; 0) (1; 0) (0; 1) (1; 1)zt(0; 0) pt;1;1 � � pt;1;4(1; 0) 
 � 
(0; 1) 
 � 
(1; 1) pt;4;1 � � pt;4;1where to get each of the pt;i;j, we replace zt and zt�1 by their values in the for-mula of p(ztjzt�1).For the actual computation on a computer, it is more straightforward to usethe formulas in proposition 4 for the general case.4 Volatility clustering4.1 MotivationA wide array of time series data is characterized by volatility clustering. At agiven date, the series shows an increase in volatility that remains for a givennumber of periods and then subsides, forming a �volatility cluster�. Those clusterscould manifest themselves several times in a given series. Such phenomena cre-ated the need to model the underlying volatility of time series in a dynamic(autoregressive) way which was an impetus behind the creation of volatilitymodels such as GARCH and stochastic volatility. For more details, consult[Bauwens et al., 2006] which is a survey of multivariate GARCH models. Ifvolatility can be thought to be showing jumps and varying in a non-smooth way,then markov switching (also know as hidden markov or markov mixture) modelscould be used to model the phenomenon.This section concerns itself with the case when volatility clustering is thoughtof as a discrete latent phenomenon, i.e. in the markov switching case. The objec-tive is to show how to generalize markov switching volatility models to the multi-variate case. In a previous section, I introduced a general framework for extendingthe markov switching model to a multivariate setting. Here, we present an illus-tration of that methodology in the multivariate volatility modeling framework.I will begin by a simple illustration that will show the di�culties and prob-lems and that will pave the way for the rest of the paper.
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Motivating ExampleFor instance, a quite rudimentary model is the following. Let yt be the vari-able of interest, yt=�zt:"t"t�N (0; 1)and zt is a binary markov with the matrix of transition probabilities P and wherestate 1 stands for low volatility and 2 stands for high volatility, i.e. �1<�2.This model is a simple markov switching model that can be estimated in astandard way (see e.g. [Hamilton, 1989], [Kim and Nelson, 1999]).It is unclear how to generalize the previous model to the multivariate case.Let yt be a p� 1 vector.� Strategy 1The most straightforward (and perhaps the less attractive) way is the followingyt=�zt1/2:"t"t�N (0; Ip)and zt is a binary markov with the matrix of transition probabilities P . �zt1/2 isthe cholesky decomposition of the covariance matrix �zt. The classi�cation ofhigh and low volatility clustering is unclear in this case because the two matrices�1 and �2 are not readily ordered.One way to get a clearer picture is to use the special decomposition of acovariance matrix into a diagonal matrix S containing the standard deviationsand a symmetric matrix R containing the correlation coe�cients as in e.g.[Barnard et al., 2000] and [Pelletier, 2006]�=S:R:SAnother shortcoming of that approach is that the change of volatility must occurin all variables at the same time (we shall refer to that phenomenon as concomi-tant clustering).� Strategy 2A second modeling strategy is the followingyt;i=�zt;i:"t;i"t;i�N (0; 1)and for i� j Corr("t;i; "t0;j)= �t;t0:�i;jwhere �t;t0 = 1ft= t0g is kronecker's delta and �i;j is the (i; j)th correlation coe�-cient.Each zt;i is a binary markov chain with the matrix of transition probabilitiesPi and each two chains zt;i and zt;j are independent for i� j.
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I concatenate all the chains zt;i in a global chain zt with 2p states in the fol-lowing manner. P =Oi=1p PiThis framework solve th concomitant clustering problem in the sense that if avariable i experiences a surge in volatility, it does not necessarily mean that vari-able j � i is experiencing the same surge. On the other hand the model assumesthat surges in volatility in di�erent variables are necessarily independent. Thisassumption is quite restrictive in many cases. For instance, in �nancial markets, asurge in volatility can be interpreted as an increase in speculation and that couldoccur simultaneously in di�erent variables. Hence the necessity to relax the inde-pendence assumption.� Strategy 3We need to relax the assumption of independence, yet we need a parsimoniousmodel that is tractable. We apply the strategy of the previous chapter.yt;i=�zt;i:"t;i"t;i�N (0; 1)and for i� j Corr("t;i; "t0;j)= �t;t0:�i;jwhere �t;t0 = 1ft= t0g is kronecker's delta and �i;j is the (i; j)th correlation coe�-cient.The matrix Z of latent variables (i.e. the markov chains in the previousstrategy) Z =0BBBB@ z1;1 � z1;p
 
 

 zt;i 

 
 
zT ;1 � zT ;p
1CCCCAis a �rst-order markov matrix-variate bernoulli with parameters � and � ofdimensions p� p respectively. Z�MB(�;�)The advantages of that representation is that the dependence between the latentvariables is taken into account in a very straightforward manner. For instance� �(i; j) describes the dependence between the respective latent volatilitiesin variables i and j, i.e. �(i; j) tells us how likely a surge in volatility invariable i be accompanied by a surge in volatility in variable j.� �(i; i) describes the probability structure of the latent volatility in eachvariable i, i.e. �(i; i) tells us how likely a surge in volatility in variable i isto occur.
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� �(i; i) describes the dynamic structure (conditional heteroscedasticitystructure) within each latent volatility in variable i, i.e. �(i; i) tells us howlikely a surge in volatility in variable i is to be followed by hight volatilityin that same variable.The matrix � is diagonal whereas � is just symmetric (if it is diagonal, then thelatent volatilities are independent of one another.)4.2 Model and InferenceInference in multivariate volatility clustering model can be considered from boththe classical and bayesian point of views.From the classical point of view, estimation would typically require use of theEM algorithm of [Dempster et al., 1977]. However, in this paper, I shall limitmyself to the explicit description of the bayesian approach. I shall describe ahybrid gibbs/metropolis sampler for drawing from the posterior of the model. Ishall also address some computational issues relating to the matrix-variatebernoulli distribution.4.2.1 The modelThe observables of the model are a length T time series of m � 1 vectors yt, fort=1;� ; T . Put the observables in the matrix Y of dimension T �m.The unobservables are1. A matrix Z of latent variables of dimension T �m.2. The parameters of the model which comprisea. The m + m(m+1)2 parameters of the matrix-variate bernoulli distri-bution which are included in the matrices m�m matrices � and �.b. The 2m + m(m� 1)2 parameters describing the covariance structure.Those include 2m parameters describing the di�erent variances ineach volatility state for each variable and m(m� 1)2 parameters whichare the entries of the unique correlation matrices across all thestates.Therefore, the model contains a total of m2 + 3m parameters which grow at apolynomial rate with the number of equations. (The traditional approach of mul-tivariate markov switching models exhibits an exponential growth of the numberof parameters if the hypothesis of independence is dropped. The advantage of ourapproach is the exhibition of a polynomial rate with an arbitrary pattern ofdependence across the di�erent equations.)The priors that will used are the following. For each one of the di�erentparameters in the matrices � and �, a normal prior is assigned that is centeredand has a huge standard deviation. For instance�i�N (0; ��i2 )�i;j�N (0; ��i;j2 )�i�N (0; ��i2 )
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The variances in those priors should be quite large for them to be non-informa-tive. Typically, they should be chosen to be 104 or higher.There corresponds a set of two variances for each variable yt;i which arerespectively the variance of the high volatility state and that of the low one.sk=0BBBBB@ �k;12
�k;i2
�k;m2
1CCCCCAfor k=1; 2 (state index) and i=1;� ;m (variable index).We shall pick an inverse gamma prior for each one of those variances�k;i2 �IG��k;i02 ; sk;i02 �The superscript 0 indicates that the corresponding quantity is a hyperparameter(i.e. a parameter of the prior distribution).For a detailed discussion of inverse gamma priors see e.g. [Robert, 2007][Bauwens et al., 1999] and [Gelman et al., 1995]. s � IG(�; �) if its density is���(�) :s�(�+1):exp�� �:s�1�.Finally, for the prior of the correlation matrix, we adopt a strategy suggestedin [Barnard et al., 2000] and use a uniform prior.p(R)_ 1The uniform prior here not cause the posterior to be improper because the spaceof correlation parameters is a compact subset of the hyper cube [ � 1; 1]m(m�1)2which is itself a compact subset of the Euclidean space Rm(m�1)2 . See[Rousseeuw and Molenberghs, 1994] for a discussion.It is not necessary to use those same priors for the bayesian inferenceapproach. They seem to be the ones to give the most straightforward way tosample from the posterior. Inverse Wishart posteriors for R are preferred whenthey can be obtained.4.3 The MCMC AlgorithmIn this subsection, an MCMC algorithm is described for taking draws form theposterior of the model. It is a gibbs sampler that contains a metropolis-hastingssweep. See [Chen et al., 2000] or [Robert and Casella, 2004] for a review of theMCMC methodology.The algorithm is describe in the following way. Repeat the following iterationfor M times. Drop B iterations at the beginning (burn-in period). Then theremaining (M � B) iterations are the draws from the posterior. In the following,we denote the n-th draw of, say, parameter  as  (n).
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Algorithm 1. The Gibbs Sampler1. Initialize the sampler withZ(0); �(0); �(0); s1(0); s2(0); R(0)2. At iteration n, drawZ(n); �(n); �(n); s1(n); s2(n); R(n)consecutively in the following ordera. Draw a matrix of latent variable Z(n) from the distributionp(Z(n)j�(n�1);�(n�1); s1(n�1); s2(n�1);R(n�1);Y )b. Draw the parameters of the matrix-variate bernoulli fromp(�(n);�(n)jZ(n))c. Draw the variances for k=1; 2 fromp�sk(n)���Z(n);Y �d. Draw the correlations fromp(R(n)js1(n); s2(n);Z(n);Y )I shall investigate the di�erent sweeps in the Gibbs sampler in more detail.4.4 Computations for the FOMMVB distributionTaking a draw of Z(n) is done in the following way. Since the rows zt(n) of Z(n)constitute a markov chain, they could be sampled in the following way. Using theclosed form formulas for p(z1) and p(ztjzt�1), those densities can be readily com-puted from �(n) and �n.Therefore, using the transition probabilities and the previous draws of sk, a�lter as in [Hamilton, 1989] can be readily constructed. That �lter1 will give the aposteriori probabilities p?(z1) and p?(ztjzt�1). Sampling from p?(z1) andp?(ztjzt�1) gives Z(n). Computing the a posteriori p?() densities from the p() den-sities shall not described in detail because it is standard in markov switchingmodels. (See e.g. the last chapter of [Hamilton, 1994] or the detailed exposition of[Kim and Nelson, 1999].)1. Standard �ltering software should be modi�ed in our case here because the markov chain is non-homogeneous and therefore, at each period t, the updating uses di�erent set of probabilities and not thesame ones.
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On the other hand computing p(z1) and p(ztjzt�1) is not standard and it usesthe closed form results exposed earlier. They should be done in the following way.First we need to explicitly be able to do computations with the mappings Cand % described earlier. Those mappings should be coded (and stored once andfor all throughout the whole MCMC iterations) in the following way.Algorithm 2. Computation of Mappings C and %As an input to this step, give m, the number of latent variables.The output is a matrix X of dimensions 2m � m. (This is shown in detail inappendix B). The matrix X allows us to compute % and C because it has the prop-erty that C(X(j; : )) = j, i.e. to compute the inverse image (C�1) of the integer j(for j = 1; � ; 2m), simply take the jth row of X. Also, to compute the inverseimage (%�1) of the integer j, simply construct the set of the columns correspondingto the non null entry of the jth row of X.Now that we know how to do calculations with the mappings C and %, we canshow how to compute the a priori transition probabilities necessary in the �l-tering step of the gibbs sampler.Algorithm 3. a priori Transition Probabilities in the Gibbs SamplerAs an input to this step, give the matrices �(n) and �(n).� Compute the matrix A(n) from �(n) and �(n) using the mapping % usingthe following formulaA(n)(%(K); %(J ))= exp"Xi2J �i+ Xj2K\J �j+2: Xi2J ;j� i2J �i;j#� Compute the sequence of vectors bt using the following recursionbt�1=A(n)0:btwhere the recursion is initialized by bT = e1 the �rst column of the identitymatrix I2m.� Compute the constant of integration KT(n)KT =e10 :AT�1:�1where �1 is the sum of the columns of A(n) and e1 is the �rst column of theidentity matrix I2m.� Compute the two sequences of 2m � 1 vectors �t and �t given by the for-mulas �t(j; 1) = exp(tr[zt0:zt:�] + tr[zt0:zt�1:�] + tr[diag(zt):Sj:�])�t(j; 1) = exp(tr[diag(zt):Sj:�])where Sj=diag(C�1(j)).
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Using the previous computations, the a priori transition probabilities arep(ztjzt�1)= bt0:�t/bt�10 :�t�1and the initial density is p(z1)= b10 :�1/KT(n)?Now we turn to drawings from p(�(n);�(n)jZ(n)). This conditional density is pro-portional to the product of the matrix-variate bernoulli density p(Z(n)j�(n); �(n))and the product of the normal priors on the entries of �(n) and �(n). AMetropolis-Hastings step is used to draw from this density.4.5 An Illustration in detail: The Bivariate Case4.5.1 The covariance structure in detailIn the bivariate case, yt=(yt;1; yt;2)0 and zt=(zt;1; zt;2)0.8><>: yt=(�zt)1/2:"t"tsN (0; I2)where (�zt)12 is the cholesky decomposition of the covariance matrix �zt�zt= �zt;12 �1;2:�zt;1:�zt;2�zt;22 !�zt=Szt:R:SztTherefore, there are four possible matrices �zt (In the general case, there wouldbe 2m possible matrices �zt because there are 2m possible vectors zt.)�(0;0) =  �1;12 �1;2:�1;1:�1;2�1;22 !�(0;1) =  �1;12 �1;2:�1;1:�2;2�2;22 !�(1;0) =  �2;12 �1;2:�2;1:�1;2�1;22 !�(1;1) =  �2;12 �1;2:�2;1:�2;2�2;22 !In the previous four matrices �k;i2 stands for the variance of the i-th variable in yt(i.e. i = 1; � ; m) and the k-th state of that same variable. Because there are twostates for each variance, i.e. state 1 and state 2, then k=1 or k=2.2
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The variances for each state are put in two vectorss1= �1;12�1;22 ! ; s2= �2;12�2;22 !where s1 corresponds to the state coded as 0 (for the whole vector yt) and s2 cor-responds to the state coded as 1.Note also that S(0;0) =  �1;12 0�1;22 !S(0;1) =  �1;12 0�2;22 !S(1;0) =  �2;12 0�1;22 !S(1;1) =  �2;12 0�2;22 !
and that the correlation matrix isR=� 1 �1;21 �

Note 1. Identi�cation issues for the covariances matricesI chose here the more parsimonious way where the correlations between thedi�erent entries of yt is �xed.In that setting, either of two methodologies can be adopted. We will illustratethose two methodologies in the bivariate case since it is clearer in that specialcase.First, either �x the correlation between yt;1 and yt;2, or �x the covariance. Thecovariance and correlation cannot be �xed at the same time because the followingequalities will be impossible�y1;y2= �y1;y2�1;1:�1;2 = �y1;y2�1;1:�2;2 = �y1;y2�2;1:�1;2 = �y1;y2�2;1:�2;2where the denominator correspond to the standard deviations in di�erent states(�k;i is the standard deviation of yt;i when the state is k and k = 1; 2) and where�y1;y2 and �y1;y2 are respectively the correlation and covariance between yt;1 andyt;2.2. Notice that here there is a slight abuse of notation because if zt = (a; b) then �(a;b) = �a+1;12 �1;2�b+1;22 ! and not  �a;12 �1;2�b;22 !, i.e. we are coding the state 0 by 1 and the state 1 by 2.
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4.5.2 The priors and conditional posteriors of the covariance parame-tersThe prior on �1;2 is the uniform distribution on [� 1; 1], i.e. p(�1;2)= 12 .The priors on �i;k2 are IG��k;i02 ; sk;i02 �, i.e. they have the densities
p(�i;k2 )= � sk;i02 ��k;i02���k;i02 � :��i;k2 ����k;i02 +1�:exp�� sk;i02�i;k2 �From an inferential point of view, conditioning on Z is equivalent to dividing thesample for each series into two series.For instance, the �rst variable y1 is divided into two subsamples and yt;1 isput in one of those samples if the zt;1 is 0 or 1. Let n1;1 and n2;1 be the sizes ofthose two subsamples. Therefore nk;i corresponds to the size of the k-th sub-sample of variable i (k=1; 2 and i=1;� ;m)Let sk;i =Pj=1nk;i yj;i2 (i.e the sum of squares of the observation in the k-th sub-sample of variable i).Note that, in the case of zero correlations, the posterior of �k;i2 conditional oneverything else is IG�nk;i+ �k;i02 ; sk;i+ sk;i02 �we can de�ne nk;i1 = nk;i+ �k;i0sk;i1 = sk;i+ sk;i0

p(�k;i2 jeverything else)= � sk;i12 ��k;i12���k;i12 � :��i;k2 ����k;i12 +1�:exp�� sk;i12�i;k2 �This shall be proved in the next paragraph.A Proof for the posterior formulation conditional on the states andits parametersWe are going to attempt to write the likelihood conditional on Z (and itsparameters � and �) up to a constant of proportionality. Remember that if thestate realizations are known, then the likelihood is equivalent to that of a linearmodels on di�erent subsamples.As earlier I is the index set f1; � ; 2mg. I.e., in this case, I = f1; 2; 3; 4g thatcorresponds, by the mapping C�1 to Z = f(0; 0); (0; 1); (1; 0); (1; 1)g. Let ni for i 2I be the number of occurrences of each vector in Z. That is T =Pi2I ni. Let y(i)be ni occurrences of vectors yt.
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Then the likelihood of each one of the samples indexed by i is givenp(y(i)j:)_Yj=1ni j�C�1(i)j� 12:exp�� 12y(i)0:�C�1(i)�1 :y(i)�and therefore p(Y j:)=Qi2I p(y(i)j:).Multiplying by the priors we obtain the posteriorp���C�1(i)	i2I���Z ;Y ;�;��_ p(R): Yi02M Yk2f1;2g p(�i0;k2 ):Yi2I p(y(i)j:)A Note on the quadratic form x 0:��1:xx0:��1:x = x 0:(S:R:S)�1:x= x 0:S�1:R�1:S�1:x= �= 1jRjXi=1m Xj=1m xi:xj�i:�jMi;j(R)where jRj is the determinant of R and Mi;j(R) is the (i; j)-th minor of R. Alsoxi is the i-th entry of the vector x.This signi�es that, when the quadratic form is considered as a function of x,the coe�cient of xi2 is Mi;i(R)�i2:jRj and the coe�cient of the cross products xi:xj is2Mi;j(R)�i:�j:jRj . When, the quadratic form is considered as a function of each one of thestandard deviations �i for i = 1; � ; m, then the coe�cient of 1/�i2 and 1/�i arerespectively Variable Coe�cient1�i2 xi2:Mi;i(R)jRj1�i 2xi:Xj� i xj�j :Mi;j(R)jRjThis proves that in the case of non-zero correlations, the posteriors for �k;i2 are nolonger inverse gamma and in that case, a metropolis-hastings step is utilized.5 An empirical illustrationI consider here a part of the dataset used in [Audrino and Trojani, 2006] and itwas download from the Journal of Applied Econometrics data archive. I use dailyreturns obtained from three stock market indices that respectively the FrenchCAC40 index, the Swiss SMI Index and US S&P500 Index. The daily price datafrom the return series were constructed span the period from January 1, 1990 toNovember 4, 2002. Our sample consists of three variables with 3350 observationseach.
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In the following �gures, the return series is showed with the �ltered probabili-ties of the state of lower volatility estimated from the multivariate markov-switching model considered earlier with diagonal covariance matrices.
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By plotting the three �ltered probabilities next to each other, we can see thatthis seems to indicate that a single latent binary variable for modeling the three-dimensional returns vector is inadequate at best. For instance, the mean absolutedeviation between the �ltered probabilities series between the Swiss and US is0.3, not high enough to warrant independence and not low enough to assume asingle latent variable. (It is 0.15 between the French and the Swiss and 0.28between the French and the US).
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Figure 4.6 ConclusionThe basic setup of the paper can be extended into several directions. One topicfor future research is relaxing the restriction to the two-state model. What isneeded is a matrix-variate multinomial distribution for a more general use of themethodology in this paper. This seems promising for future research. Since a nat-ural representation of a vector of multinomial variables can be a matrix of indi-cator variables coding the states, the matrix-variate bernoulli distribution can infact be used to model multinomial variables. The ideas are going to be furtherexplored by the author in future work.Another investigation are is model selection. Due to the big number of pos-sible alternative modeling possibilities, automatic selection procedures are of greatinterest and very di�cult to carry out. This might prove a quite intriguing andde�nitely challenging problem for future research.On the purely computational side, a study of the e�ciency of di�erent MCMCalgorithms constitutes an interesting complementary study to be performed in thefuture. One intriguing theoretical aspect for further study is the non-homogeneityof the latent markov chain underlying the markov-swithcing model. It should beinvestigated in several directions.On the application side, the multivariate volatility cluster special case couldbe augmented in order to incorporate more complex mean dynamics.
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Appendix A ProofsProof. Theorem 1Let us integrate some element of t with respect to zt, say t(%(K)) for someK 2 P(M). If we obtain a linear combination of t�1, then the rest of the prooffollows by induction.t(%(K)) is equal toexp"Xi=1m yit:�i+Xj2K �zt;j+wjt�:�j+ Xj2MnK wjt:�j+2 Xi=1;j� im ui;jt :�i;j#which is also equal toexp" Xi=1m �zt;i + yit�1�:�i + Xj2K �zt;j + zt;j:zt�1;j + wjt�1�:�j + Xj2MnK �zt;j:zt�1;j +wjt�1�:�j+2 Xi=1;j� im hzt;i:zt;j+ ui;jt�1i:�i;j#or equivalentlyexp" Xi2M �zt;i + yit�1�:�i + �zt;i:zt�1;i + wit�1�:�i + Xj2K zt;j:�j +2 Xi2M;j� i2M hzt;i:zt;j+ ui;jt�1i:�i;j#Now, integrating over zt is done by summing over all 2m di�erent vectors zt thatcan occur. Every such zt is given by C�1 � %(J ) 8J 2P(M).As a preliminary step, let us replace one zt (say the one corresponding toC�1 � %(J ) for a given J ) by its value. Such zt contains 1 over i 2 J and 0 overover i 2MnJ . Therefore, the kernel entry corresponding to K evaluated at the ztcorresponding to J , i.e. t(%(K))jzt=C�1�%(J ) can be written in the following wayexp24 Xk2J ( Xi2M\J �1 + yit�1�:�i + �zt�1;i + wit�1�:�i + Xj2K\J �j +2 Xi2M\J ;j� i2J h1+ ui;jt�1i:�i;j)+Xk2MnJ ( Xi2M\MnJ yit�1:�i+wit�1:�i+2 Xi2M\MnJ ;j� i2MnJ ui;jt�1:�i;j)35
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Now, of course M\ J = J and M\ (MnJ ) =MnJ because J �M. And alsoreplace redundant summation operators such as Pk2J Pi2J by simply Pi2J ,we rewrite t(%(K))jzt=C�1�%(J ) asexp"Xi2J �i + Xj2K\J �j + 2: Xi2J ;j� i2J �i;j#:exp"Xi2J yit�1:�i + �zt�1;i + wit�1�:�i +2 Xi2J ;j� i2J ui;jt�1:�i;j+ Xi2MnJ yit�1:�i+wit�1:�i+2 Xi2MnJ ;j� i2MnJ ui;jt�1:�i;j#where we have factored out the therm exphPi2J �i+Pj2K\J �j +2:Pi2J ;j� i2J�i;ji because it does not depend on the data Z. Now, grouping the terms over Jand those over MnJ , we rewrite t(%(K))jzt=C�1�%(J ) asexp" Xi2J �i + Xj2K\J �j + 2: Xi2J ;j� i2J �i;j#:exp" Xi2M yit�1:�i + wit�1:�i + Xj2Jzt�1;j:�j+2 Xi2M;j� i2M ui;jt�1:�i;j#Now the formula is very clear. On the right, the exponential term is simplyt�1(%(J )). On the the left, the exponential term is simply a multiplicative formthat does not depend on the data.Therefore, replacing zt = C�1 � %(J ) inside t(%(K)) yields the following for-mulat(%(K))jzt=C�1�%(J )= exp"Xi2J �i+ Xj2K\J �j+2: Xi2J ;j� i2J �i;j#:t�1(%(J ))Now, summing over zt inside t(%(K)) is equivalent to summing over all zt= C�1 �%(J ) 8J 2P(M).Xzt t(%(K)) = XJ 2P(M) t(%(K))= XJ 2P(M) exp"Xi2J �i+ Xj2K\J �j+2: Xi2J ;j� i2J �i;j#:t�1(%(J ))Therefore, we see that integrating any element of t, say t(%(K)), will yield alinear combination of t�1 where the coe�cients are equal to exph Pi2J �i +Pj2K\J �ji �Proof. Corollary 1The proof follows easily from that of theorem 1.All we have to do is write the identityXzt t(%(K))= XJ 2P(M) exp"Xi2J �i+ Xj2K\J �j+2: Xi2J ;j� i2J �i;j#:t�1(%(J ))
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in matrix form. �Proof. Proposition 1The proof is carried out by induction.Begin by writing p(z1; � ; zT) as e10 :T/KT . This simply true because thekernel of the density of Z is equal to the �rst entry in T .The �rst marginal density p(z1; � ; zT) can be written in the form bT0 :T/KTwith bT = e1.Let us assume that p(z1; � ; zt) can be written as bt0:t/KT . We would like todeduce now that p(z1; � ; zt�1) can be written in the form bt�10 :t�1/KT and thendeduce the relation between bt and bt�1.Carry out the integration operation over ztp(z1;� ; zt�1) = Xzt p(z1;� ;zt�1;zt)== Xzt bt0:t/KT= KT�1:bt0Xzt t= KT�1:bt0:A:t�1now, replace bt0:A by bt�10= KT�1:bt�10 :t�1which proves that we can deduce the formula p(z1; � ; zt�1) = bt�10 :t�1/KT andthe recursion bt�1=A0:bt. �Proof. Proposition 2Remember that we can obtain p(z1) from p(z1;� ; zT) by way of proposition 1,i.e. p(z1)= b10 :1/KTIntegrating over z1 will yield 1. Pz1 p(z1)= 1 and thereforeXz1 p(z1) = 1= KT�1:b10 :Xz1 1And therefore KT = b10Pz1 1 �Proof. Corollary 2The proof follows easily by induction from the application of the formulaKT(�;�)=e10 :AT�1:�1 �Proof. Proposition 3We will analyze the ratio bt0:t/bt�10 :t�1

36 Appendix A



Write bt�10 :t�1 as Pk=12m bt�1(k):t�1(k) and then divide it by the scalart�1(%�1(�)) (i.e. the kernel of a density that has t� 1 observations only)bt�10 :t�1 = Pk=12m bt�1(k):t�1(k)t�1(%(�))= Xk=12m bt�1(k): t�1(k)t�1(%(�))(note here that the set of indices k for k = 1; � ; 2m are given by the mapping k =%(K)).The ratio t�1(k)/t�1(%(�)) can be easily proved to be equal tot�1(k)t�1(%(�)) = exp" Xi=1M yit�1:�i + Xj2K �zt�1;j + wjt�1�:�j + Xj2MnK wjt�1:�j +2 Xi=1;j� iM ui;jt�1:�i;j � Xi=1M yit�1:�i � Xj2� �zt�1;j + wjt�1�:�j �Xj2Mn� wjt�1:�j� 2 Xi=1;j� iM ui;jt�1:�i;j#= exp"Xj2K �zt�1;j+wjt�1�:�j+ Xj2MnK wjt�1:�j�Xj2M wjt�1:�j#= exp"Xj2K zt�1;j:�j#Similarly, we have bt0:t=Xk=12m bt(k): t(k)t(%(�))and the ratio t(k)/t(%(�)) can be computed accordinglyt(k)t(%(�)) = exp"Xi=1m yit:�i+Xj2K �zt;j +wjt�:�j + Xj2MnK wjt:�j + 2 Xi=1;j� im ui;jt :�i;j �Xi=1m yit�1:�i � Xj2� �zt�1;j + wjt�1�:�j � Xj2Mn� wjt�1:�j � 2 Xi=1;j� imui;jt�1:�i;j#= exp"Xi=1m �yit� yit�1�:�i+Xj2K zt;j:�j + Xj2M �wjt �wjt�1�:�j + 2 Xi=1;j� im�ui;jt � ui;jt�1�:�i;j#= exp"Xi=1m zt;i:�i+Xj2K zt;j:�j+ Xj2M zt;j:zt�1;j:�j+2 Xi=1;j� im zt;i:zt;j:�i;j#we see that neither t�1(k)/t�1(%(�)) nor t(k)/t(%(�)) do contain zt�j, 8j 6 2which proves our claim.
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To quickly resume, write the densityp(ztjzt�1)= Pk=12m bt(k):exphPi=1m �zt;i:�i+ zt;i:zt�1;i:�i�+Pj2K zt;j:�j+2Pi=1;j� im zt;i:zt;j:�i;jiPk=12m bt�1(k):exphPj2K zt�1;j:�ji �Proof. Proposition 4The proof follows easily but tediously from dividing both numerator anddenominator of the conditional density by t(%(�)) and simplifying the expres-sion. �
Appendix B An algorithm for constructing themapping CThere are numerous ways of constructing a mapping C that uniquely pinpoints aninteger in the index set f1; � ; 2mg to one possible occurrence of the vector zt.Therefore, it is important to explicitly describe a way of doing so.We propose the following extremely simple algorithm; Construct a 2m � mmatrix X such that each of its columns is equal to �2m�i
  02i�1�2i�1 !, i.e.X(: ; i)= �2m�i
� 02i�1�2i�1 �where 0k is a column vector of size k that only contains zeros and where �k is acolumn vector of size k that only only contains ones.Each row of X will correspond to a unique possible zt among all possibleunique 0-1 permutations of the entries of zt.And now de�ne C as being given by the following identityC(X(j; : )) = jWe will give a simple example to clarify the ideas.Let m = 3, then there are 2m di�erent possible vectors zt. The set Z is there-fore Z = f(0; 0; 0); (1; 0; 0); (0; 1; 0); (1; 1; 0); (0; 0; 1); (1; 0; 1); (0; 1; 1); (1; 1; 1)gThe di�erent columns of X are computed in the following wayX(: ; 1) = �22
� 020�20 �= 0BB@ 1111 1CCA
� 01 �
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=
0BBBBBBBBBB@

01010101
1CCCCCCCCCCAX(: ; 2) = �21
� 021�21 �= � 11 �
0BB@ 0011 1CCA

=
0BBBBBBBBBB@

00110011
1CCCCCCCCCCAX(: ; 3) = �20
� 022�22 �

=
0BBBBBBBBBB@

00001111
1CCCCCCCCCCAand therefore

X =
0BBBBBBBBBB@

0 0 01 0 00 1 01 1 00 0 11 0 10 1 11 1 1
1CCCCCCCCCCAEach row of X is a unique zt. The reader can easily check that C((0; 0; 0)) = 1,C(1; 0; 0)=2, C(0; 1; 0)=3 etc...
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To quickly show the connection between C and %, we only need to note that%�1 � C maps a row of X (where there are k integers 1) into a set fi1;� ; ikg whereeach element of fi1; � ; ikg is the column index referring to where the 1 occurred.E.g.
C
0BBBBBBBBBB@
0BBBBBBBBBB@

0 0 01 0 00 1 01 1 00 0 11 0 10 1 11 1 1
1CCCCCCCCCCA
1CCCCCCCCCCA =

0BBBBBBBBBB@
12345678
1CCCCCCCCCCA = %

0BBBBBBBBBB@
0BBBBBBBBBB@

�f1gf2gf1; 2gf3gf1; 3gf2; 3gf1; 2; 3g
1CCCCCCCCCCA
1CCCCCCCCCCASimilarly, if m=2, then X =0BB@ 0 01 00 11 1 1CCAHere, we can easily see the relation between C and %.C0BB@0BB@ 0 01 00 11 1 1CCA1CCA = 0BB@ 1234 1CCA = %0BB@0BB@ �f1gf2gf1; 2g 1CCA1CCA

Appendix C An Economic ExampleExample 4. Let yt be a vector of GDP growth data where each component ofthe vector corresponds to one countryvariable country latent variableyt;1 U.S. zt;1yt;2 Canada zt;2yt;3 France zt;3The model described in the introduction is�(L):yt= �zt+ "t"t�N (0;�)�zt=0B@ �1zt;1�2zt;2�3zt;3 1CAwhere �(L) is multivariate lag polynomial.
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Let i be the country index. zt;i is the latent variable describing expansions andrecessions in country i. Since zt;i indexes �i, the mean of the autoregressive pro-cess of GDP growth of country i, �i takes two di�erent values �i;j for j = 1; 2,that is �i;1 if zt;1 = 0 and �i;2 if zt;2 = 1. If �i;1< �i;2, we can say that the state 0of latent variable zt;i corresponds to a recession for country i. We see that themodel is quite �exible and corresponds to the economic discussion in the intro-duction.
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