A Multivariate Generalization of the
Markov Switching Model

with an application to volatility clusters

BY MouamMaAap KHALED

Paris School of Economics and University of Paris I Panthéon-Sorbonne

Job Market Paper
September 2008

Abstract

I present a multivariate generalization of the simple markov-switching model.
I allow for the introduction of several latent processes that have a simple
parametric distribution. The matrix-variate bernoulli distribution yields a
flexible yet parsimonious pattern of dependence between the different latent
processes while preserving the markovian property. I derive several analytic
results and show how to compute quantities such marginal and conditional
distributions. I also show how to estimate the model in the bayesian frame-
work and give several examples.

I then apply the approach to multivariate volatility clustering models. In
the usual approaches to the problem, volatility clusters need either occur
simultaneously in different series or be completely independent across those
series. Contrary to those approaches, the framework in the paper allows for a
rich pattern of dependence in the volatility clusters taking place across dif-
ferent variables.

1 Introduction

The markov-switching regression model has proved to be a useful tool in econo-
metrics over the past two decades. Generalizations of the model to the multi-
variate case have been undertaken in several papers (see for instance
[Krolzig, 1997] and [Sims and Zha, 2006].) However, there are several shortcom-
ings of the current literature of multivariate markov-switching models. For
instance, the usual generalizations either assume the existence of a single rudi-
mentary latent process underlying the model or suppose some simple way of com-
bining different latent processes such as assuming they are independent.

Before discussing the econometric aspects of those details, I shall give some
economic motivation that justifies addressing those shortcomings. Let us consider
a cornerstone of markov-switching models in econometrics and study its implica-
tions in the multivariate setting. The GDP growth model of the seminal paper
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[Hamilton, 1989] formulates a markov-switching model in which the mean of the
GDP growth autoregressive process is time-varying. There are two states, each of
which corresponds respectively to each one of the two-values p; and ps assumed
by the time-varying mean with p; < ps. The standard economic interpretation is
that one state (say that corresponding to jy) represents economic recessions and
the other one corresponds to economic expansions. One observes that the dura-
tion of the recession state is smaller than that of the expansion state. Now con-
sider going to the multivariate setting and taking a vector of country GDP growth
series, say, the U.S., Canada and France. On one hand, an economist thinking
about each individual country’s expansion and recession states might think of
them as occurring simultaneously with high probability due to the inter-connec-
tion of their economies, that is, due to close economic ties between say the U.S.
and Canada, recessions are likely to hit both countries at the same time. On the
other hand, the same economist can not exclude that some recessions might occur
in some countries and not others, that they might last less in one country than
another or that there might exist some delay effects. For instance, one might
think that recessions occur more often simultaneously in the U.S. and Canada
than in the U.S. and France. Turning back to the multivariate markov switching
model, it is difficult to think of an easy way of incorporating those features in it.
If one wants to be flexible, one should consider a binary latent variable for each
country. This will create a markov-switching model with a total of 23 = 8 states
(that is, respectively for the U.S.-Canada-France, the states expansion-expansion-
recession, expansion-recession-expansion, expansion-expansion-expansion etc...)).
This is quite unwieldy and moreover there is a total of 22%% — 23 = 56 transition
probability parameters to estimate. Those parameters are very difficult to inter-
pret and it is their estimation that will characterize the simultaneity and duration
features of those states. One common assumption used in multivariate markov-
switching models but that is completely absurd from an economic point of view is
to assume those latent variables to be independent. That will greatly reduce the
number of parameters, make the interpretation easier, but to say that a recession
in the U.S. is completely independent of a recession in Canada will be immedi-
ately rejected by any economist with a common sense. A third solution that is
often used is to simplify the model by supposing a common latent process and
therefore forcing recessions to occur all at the same time in all countries. This
economic framework is described in more technical terms in appendix C.

The model that I propose will solve all problems exposed above with no loss in
flexibility and with great parsimony. First, the number of parameters in my
framework grows at the rate O(m?) and not at the prohitive rate O(2*™) men-
tioned above. The economist will get parameters that are meaningful and easy to
interpret and further utilize from an economic perspective, that is, there will be
parameters that describe the strength of simultaneity of recession occurrences
between each pairs of country. In other words, he will not have to rely on the
complex transition parameters mentioned earlier to study this phenomenon but
rather refer to formulating some immediately interpretable parameters character-
izing the dependence structure of the latent variables. This will be explored in
more details in the next sections.
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As another possible economic application, consider modeling financial returns
series. A financial economist might consider a markov-switching model for the
returns series of a given financial asset whereby he studies the time-varying nature
of the series variance. Volatility clusters are a natural phenomenon for returns
series. The variance seems to take a jump up suddenly, stays high for a while,
takes a jump down, stays low for a while and so forth. I shall call those forms
volatility clusters. This could naturally be described by a markov-switching model
on the returns series with a time-varying volatility. The episodes of sustained
peaks of volatility are often attributed to a more volatile economic environment. I
shall simply refer to those states as ones of “high speculation” in an obvious abuse
of language. When going to the multivariate setting, that is considering several
financial assets at the same time, a financial economist might be interested in
describing the nature of occurrence of volatility clusters across different assets.
Volatility clusters occurring simultaneously in different markets can describe spill-
over effects and financial contamination as investors behave similarly in those
markets. At the same time, very different financial assets might display different
behaviors when it comes to volatility clusters. This is a natural application where
traditional multivariate markov-switching models usually face great difficulties
and where my multivariate frameworks will find a natural simple illustrative
application. I consider this in more details in section 4 and illustrate with real
data in section 5.

The main contributions of the paper are the following. I formulate a new mul-
tivariate markov-switching model that is flexible and parsimonious and fill a gap
in the multivariate-switching literature. The model relies on a parametric struc-
ture of the latent variables that is difficult to handle and that is known as the
matrix-variate bernoulli distribution. I derive new results concerning the constant
of integration of the matrix-variate bernoulli distribution and several marginal
and conditional distributions in closed form which will make possible inference
both from the frequentist and bayesian perspectives. I illustrate with an applica-
tion to multivariate volatility clusters and concentrate on bayesian inference.

2 The Model

I consider here a multivariate generalization of the markov-switching model taking
the following form

Yilze ~ f(®z)

Z=(z1,....2r) ~ MB(O,A)
In the first equation y; is a vector of dependent variables, x; is a vector of covari-
ates and z; is an m x 1 vector of binary latent variables. ¢ is a p x 1 vector of
parameters. Notice that ¢ is indexed by z;, which means here that ¢ takes as
many different values as z; can take. Since z; is an m-dimensional vector of
binary variables, there are therefore 2™ different vectors of parameters 8,,. The
first equation can be considered as the measurement or observation equation in a
state-space model setting.
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The second equation, Z is a T' x m matrix where the ¢t-th row contains z;. Z
is the matrix of latent variables and is distributed as first order markov matrix-
variate bernoulli with parameter matrices ® and A. More details on this will
come in the next section. The parameter matrices ®@ and A characterize the
dependence structure of the latent variables. In a state-space model setting, the
second equation can be considered as the law of motion or state equation.

The econometrician who uses that model start with a given parametric mod-
eling framework y;|z; ~ f(¢) and generalizes it by making some or all of the
parameters in ¢ time-varying. An interesting feature is that, due to z; being mul-
tivariate, subsets of the parameters vector ¢ can be made to be time-varying dif-
ferently from other subsets. We shall illustrate this unique feature with several
examples.

Example 1. As a simple illustrative example that should clarify the notation,
take m=2, p=3 and ¢ = (. ¢, C)'. z; can take here four different values for each
time period ¢, that is (0, 0)’, (0,1)’, (1,0)" and (1,1)". In this example, we decide
to make the latent variables index ¢ and ( separately without indexing 1. z;
and z; o indexes { and (. Here, there are the different values allowed here

Zt ¢zt

(0.0)' | (¥. 4. )’
0.1 (v, &, 6)
(1L0)' | (¢, 6. G)'
(LD (¢.6,¢)

The previous example shows the flexibility that is allowed by our model. Other
models could have been also allowed such that making z;; index both 1 and ¢
and 2 5 index £, or making 2 ; index both v and & and z; 5 index (.

m and the different possible configurations are chosen by the econometrician
to conform with his modeling decisions.

An important special case multivariate markov-switching model is the multi-
variate regressions special case. This takes the following form

Y =20z, + w
’U,tNN(O, EZt)
where in that case ¢ = (3, vech(X)) and u, is an error term defined as the differ-

ence between y; and x;.3,,. Two important examples that belong to that special
case of models are the following.

Example 2. Regression coefficients and error variance that are sepa-
rately switching
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This is a very simple illustrative problem
V=208, + 0, 5
StNN(O, ].)

B and o depend on two different latent chains z; ; and 2z, that are dependent.

Conditional on Z = (z, ..., ZT)/, the problem simplifies to the heteroscedastic
regression model

p=x(1—21). 01+ xr201. B2+ uy
w=(uy,...,ur) ~N(0,Q)
Q =diag(wy, ..., wr)
wi="h(zt9,0%,03) =01.(1 — 21.9) + 03.21 2

To see how to implement the part of the Gibbs sampler that conditions on Z, see
e.g. |[Bauwens et al., 1999] and [Koop, 2003].

In the next example, the latent variables configuration in the sense that each
latent underlies a single equation in the system of equations of the multivariate
regression model.

Example 3. A multivariate regression model with a different chain
underlying each equation.

( Yt1 Yt,2 Yt,3 ) :mt-( Bl,zt,l /62,215,2 /83,Zt,3 ) +uy

2

0-1;215,1
’utNN 0, 0 U%,Zt,Q
2
0 0 0-3,2,513

one can think of the system as a collection of univariate markov-switching regres-
sions depending each on a distinct latent process z;, for i = 1, ..., 3. The latent
processes are correlated each one with another and moreover, the residuals from
the different regressions are not independent.

I can also consider a model where the covariances are not zeros.

2
01,21

2
u~N|[0,| ou 03,

2
031 032 032,

In the next section, I will study the first-order markov matrix-variate bernoulli
distribution and its use for describing the structure of the latent variables. We
shall also derive several results that will prove essential for inference purposes.
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3 The probability structure of the latent processes

In this section, I describe in detail the way to construct the joint distribution of
the latent processes. Subsection 3.1 reviews the matrix-variate bernoulli distribu-
tion as introduced in |Lovison, 2006]. In subsection 3.2, T introduce our concept
of “augmented kernel vector”. That concept is crucial since it is going to allow us
to easily prove several of our results here and it will allow us the possibility of
compactly and neatly writing several of our results.

3.1 The matrix-variate bernoulli distribution

This subsection quickly reviews the paper of [Lovison, 2006 in which the matrix-
variate bernoulli distribution was introduced. We then present those aspects of
the distribution that we will require for our modeling of the markov-switching
multivariate regression. Throughout the section, we will attempt to be as close as
possible to [Lovison, 2006|’s initial notation.

As described earlier, we want to model m different binary latent processes con-
sisting each of T observation. Therefore, the typical random variable considered is
a matrix Z of size T x m where each column of the matrix corresponds to a dif-
ferent latent process. Throughout the paper, we will denote the ¢-th row of Z by
zifor t=1,...,T and we will denote the j-th column of Z by z(. ;) for j=1,...,m.
Equally, we will denote the (i, j)-th entry of Z by z; ;.

The matrix-variate bernoulli distribution allows for different patterns of
dependence. Those include dependence between different variables (simple
column-wise dependence between, say, z(;.) and z . for j' # j). dependence
between different periods in time (or, put differently, observational unit depen-
dence between, say, z;; and z, ; for s # t) and finally mixed variable-unit depen-
dence (say between z; ; and z; j»). In this paper, I will not address mixed variable-
unit dependence.

3.1.1 The density and dependence parameters
The density of Z is equal to

1 /
Z|W)=———expivec(Z') . W.vec(Z'
where W is a T'm x T'm matrix that contains the density parameters. Kp(W) is
the integration constant that depends on ¥ and that is given by the following for-

mula
2Tm

Kr(®)=| > exp{vec(Z{)" ®.vec(Z{)}

k=1

where each Z, represent one possible Z matrix among all the 27™ possible such
matrices.

The matrix ¥ groups all the parameters that describe the dependence or asso-
ciation structure of the different z; ; random variables (for ¢t = 1, ..., T and j =
1, ..., m). Therefore, it has a very special structure that will be explicitly defined
after describing the different dependence patterns allowed in the matrix-variate
bernoulli distribution.
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The patterns of dependence allowed can be classified in three categories. The
three categories of parameters associated with each pattern will be given a dis-
tinct notation each in order to distinguish between them

e The parameters describing pure variable association
S
7, — ,
07 =077 Vit

Those parameters describe the dependence between two different variables,
i.e. between two different columns of Z.

e The parameters describing pure unit (or observational) association
J
A v

Within a single column of Z, say the j-th column, i.e the j-th variable,
those parameters describe the dependence pattern between two different
rows t and ¢, i.e. two different observations.

e The parameters describing mixed unit-variable association
i i
The parameter ¢§',’tj}’ describes the dependence between the ¢-th observation
of the j-th variable and the t'-th observation of the j’-th variable. I.e., it

describes the dependence between the (¢, j)-th entry of Z and its (¢', j')-th
entry.

In addition to the parameters describing patterns of dependence or association,
we need some parameters that describe the within probabilistic structure of each
variable or column of Z. I.e., more concretely, we need parameters that describe
the 1 — 0 frequency whiting each variable. For that, we use the parameters

0] =67, Vit

The difference between parameters 67 (a single index) and parameters 677" (two
indeces) is that 67 characterizes the overall 0 — 1 pattern within variable j and
that 677" characterizes the overall contemporaneous (i.e for the same observation
t) dependence between variables j and j'.

It is possible to tidy the presentation up by putting the parameters into
matrices. Let us introduce the following symmetric m x m matrices ® and A ¢

g1 pL2 ... pLm
e- &
Hm
1 1,2 1,m
)‘t t! t,t’ ¢t t!
2
At,t’ :Ai,t’,t: )\t’tl
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Now, it is possible to define the parameter matrix W of the matrix-variate
bernoulli distribution as a function of ® and the A; ;s

O Ao -+ A1 Air
Ay C) : Ao r

. . . . T
U= A =100+ Y EwoAu

: : : : t=1,t'+t
Arqq ¢ ® Ar.r
Ary Ars - Arroy O

The E;; matrices are such that all of their entries contain zeros except for the (¢,
t")th ones which contain a one.

One can factor the likelihood p(Z1©, ..., A;y, ...) so as to write it in the fol-
lowing form

T
exp{tr[Z'.Z.O]} H exp{tr[Z' . E; 1. Z Ay ]}

t=1,t'#t

1
Kr(©, Ao

After writing the likelihood in that form, we can immediately see that the quanti-
ties

YANA
and each one of

Z'Ey .2

are jointly sufficient statistics for ® and each one of the A, ;s respectively.

As a matter of fact, we can describe the parameters by sufficiency. We are
going to explain in further detail in subsection 3.1.4. We delay that interpretation
because we are more interested in the special case of the first-order markov case
and in that case, the interpretation is simpler.

Another possible interpretation is through the use of “conditional” log-odds
ratios. This is quickly resumed in subsection 3.1.2.

In this paper, I will only address the special case of the matrix-variate
bernoulli distribution, that is the first-order markov case (that case was give as an
example in the paper of [Lovison, 2006]). Subsection 3.1.3 is totally devoted to
that task.

For further details on those general parameterizations, see [Lovison, 2006] (and
e.g. [Cox, 1972|, [Zhao and Prentice, 1990] or [Cox and Wermuth, 1994]).

3.1.2 “Conditional” log-odds ratio interpretation of the dependence
parameters

One sees from the definition of the dependence parameters that the distribution
allows for pairwise interactions only. That might prove a formidable restriction in
certain applications, but in our case, the distribution offers exactly what we need.
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The way each of those parameters is described is through the use of odds
ratios. For instance ¢t 7 can be written as

7.5 P{th lztl /ZI}P{ZtJ—O Zt/ /—0}
¢y =log
' p{ZtJ 1 ) Rt /—0} P{th 0 Zy, /_1}

The probabilities in the log-odds ratios are conditional on the rest being zero.
The 67s are written as

o o

and again the probabilities appearing in the fractions are conditional on the rest
being zero.

Although conditional log odds ratios constitute a neat and elegant way of
interpreting the dependence parameters, we prefer to use sufficiency for that pur-
pose. In particular, since the distribution used by those log odds ratios is condi-
tional on all the other entries in the matrix Z being set to zero, it might prove
less useful in economic applications than the interpretation that relies on the con-
cept sufficiency. We will explore that idea in more detail in subsection 3.1.4.

3.1.3 The first-order markov case

Now I am going to illustrate the first-order markov special case. The density of
the matrix-variate bernoulli distribution simplifies greatly since, in order to
account for temporal dependence of the first order, one will only need a single
parameter within each latent process only. That is, z; ; and 2, ; will dependent if
and only if s =t + 1 for s > t. Therefore, the parameters reflecting markovian
dependence between units in each latent process are

o= N oifs=t+1 fors>t
L5771 0 otherwise

On the other hand, the contemporaneous dependence between latent process j
and latent process j’ will be captured by 67+,

Mixed dependence of the first order can also be allowed (i.e. dependence in
one chain on past values of other chains)

b1 = @I it =1+ 1
bt 0 otherwise
However, for the purposes of our paper, I will set all mixed dependence parame-
ters to zero.

In matrix notation

1 1,2 1,m
AL o7 e @)
2
Al

Ai,i+1 =A=
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and since I set all mixed dependence parameters zero, the matrix A will be diag-
onal

Similarly, the matrix © is defined as in the general case

91 91,2 Ql,m
92

Hm

Therefore, for the general notations of the matrix-variate bernoulli distribution,
the general matrix containing all parameters can, as a result, been written as

UV=Ir@O0+L oA

where L, is a matrix containing ones on the first right off-diagonal

010 -0
001 -0
Li=| : : -
00 - 01
00 - 00

The likelihood of the first order matrix-variate bernoulli distribution is therefore

p(Z|©,A) = exp{tr[Z'.Z.O|+tr[Z'.L.Z.A]}

1
K’T(ea A)
where Z'.Z and Z'.L.Z are the sufficient statistics for @ and A respectively.

I will hereafter refer to the first-order markov matrix-variate bernoulli distri-
bution through the abbreviation FOMMVB.

3.1.4 Interpretation of the dependence parameters

The formula for the joint density is all that one needs to interpret the parameters.
Instead of interpreting the general case with m variables, T will explicitly write the
univariate and bivariate cases so as to shed some light on the distribution.

In the univariate case, Z is of size T' x 1 and its probability density function is
given by

0+

T
>4
t=1

1
p(ZH,/\):m.exp<

S

t=2

. T 2 T . .
where one commonly writes z; 1 as z; and where ) 2 = > 2 since z is
binary.
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Here we see how 6 and A are defined by sufficiency. To estimate 0, a sufficient
statistic ( Zt | %) is the number of times the state labeled by 1 has occurred.
Similarly, to estimate A\ a sufficient statistic (Zt , Zt-2¢—1) 18 the number of times
the state labeled as one was followed in time by the same state, i.e. the number of
times that 1 occurs consecutively in the column of the matrix is sufficient to esti-
mate \.

For the univariate case, the T" x 2 matrix Z has the following density

1
KT(Hl, 92’ 91,27 )\1’ )\2)

T
exp ( [Z 21
t=1

p(Z161, 6,012 )1, \2)

O+

X

T
z Al
t,1-2t—1,1] -
t=2

T T
2
+ E 22| .0 g 2t,2-%2t-1,2
| t=1 t=2
T
+ E Zt,1-%t,2 .91’2
| t=1

Here, the interpretation of (6%, #% A\, A\?) is the same as in the univariate case. As
for 912, the interpretation is also given by sufficiency. The sufficient statistic for

estimation 62 is Zthl 2¢1.2t,2 which the number of times that the state labeled
by 1 occurred simultaneously for both latent processes.

3.2 Augmented kernel vector

The main point is that, in order to compute several important quantities such as
marginal densities and such as the constant of integration, one needs to integrate
over several elements of Z. Integration with respect to several elements of Z, e.g.
with respect to z;, will yield a functional expression that is different from the
kernel of matrix-variate bernoulli distribution (i.e. the density without dividing
by the constant of integration.) It turns out that it is possible to write, for each
date ¢, a vector of size 2™ which has the unique property that, if one somehow
integrates one of its entries with respect to z;, then we will obtain a linear combi-
nation of the same vector at date £ — 1. That is, those vectors of size 2™ are
somehow “closed” to the integration operation. I will dub those vectors as “aug-
mented kernel vectors”.

Before writing the main result of the paper, I will try to justify the use of the
term kernel vector.

The kernel (i.e. the density function without the normalizing constant) of the
FOMMVB distribution is equal to

exp{tr[Z'.Z.O|+tr[Z'.L1.Z .\ ]}

In less compact notation but one that might prove helpful for the purpose of
introducing the concept, we can write the kernel as

exp Zy, 9’+Z wl N+2 Z ul .04

i=1,j%#1
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where T introduced the following notation

Notation 1. Define the following quantities

t

tAE :
i Zrii

T=1
t
tA
W;= ZrisRr—1i
T=2
t
t A
U,‘,j— ZT,@'-ZT J
R T=1
Obviously
t t t
n Uy Ul,m
! ! . t .
Zl:t-let = : Y; :
t t
um71 s s s ym

where Zy.; denote the first t rows of Z.
We also have obviously that

wy ok *
/! .
Zl:t-Ll-let: : * U}f *
t

where of course Ly is of dimension t x t here and where the blanks * refers to
terms that we would not need to define since A is a diagonal matriz and we only
care about the trace of Z{.,.L1.Z1.4. \.

If one integrates the kernel with respect to z7, then we will obtain a linear
combination of exponential terms that do not have the same functional form as
the kernel (which it is itself an exponential term). The only difference are the
multiplicands of the different A\’ for i = 1, ..., m, that is, we will have expressions
such as

(2 +wi) Nfori=1,....,. M

inside the exponential terms.
In particular, we will prove that we will have 2™ different such terms.
Moreover, there exists a one-to-one and onto mapping from the power set of
M into those terms. I will begin by providing the following definition.

Definition 1. Let us define the set

M=E{1,...,m}
and its power set as P(M).
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Define the index function that maps each element of P(M) into the integer set
{1,...,2™}
0:P(M)—{1,...,2m}

For instance, one can map the null set into the integer 1, i.e. o(¢) = 1, the set
{1} into the integer 2, i.e. o(¢)=2 etc...

Also, consider the row vector z; of size 1 x m. There are 2™ different possible
such vectors. Define that set as Z. Therefore, there exists a one-to-one and onto
mapping from either the index set {1,...,2™} or the power set P(M) into the set
Z. Define that mapping as C.

C:Z—{1.....2m}

As an example, suppose m=2 and z;=(0,0), then we can consider that C(z;) =1.

Moreover, we can easily use 0~ * o C and C ' o o as one-to-one and onto map-
pings between Z and P(M).

It is important to be able to efficiently construct one such mapping as C. We
will show one such way in appendix B. Moreover, the algorithm given in appendix
B will implicitly show how to undertake several of the numerical computations
associated with the analytic ones exposed in the paper.

Using the previous notation, we can, for instance, write the kernel of the

FOMMYVRB as
exp Z yl 0+ wl N+ 2. Z ul ;.0M9
1EM 1EM,jFieM

Now, let us create a 2™ x 1 vector where each entry will be equal to one of the
functional form that we introduced earlier.

Definition 2. Define the t-th (for t=1,...,T) augmented kernel vector v(Z),
(simply referred to hereafter as ~:) as a 2™ x 1 vector ~; where the j-th entry (for
k=1,...,2™) is given by

exp Z ylo + Z (2e,5 4 wh) M + Z wh N 42 Z ut ;.07
ieM jek jeEM\K iEM,j#ieEM
where k= o(K) and M\K is the complement of K in M.

Equivalently, we could have introduced an alternative way of writing v;(o(K))
that is useful in the rest of paper and that is identical to the previous one

~i(0(K)) =exp Z yho' +wh A+ Z 2t 3 N+ 2. Z uf ;.07
ieM JEK 1EM,jFIieEM

I will reintroduce some matrix notation here, which will make the subsequent
exposition more compact.

Definition 3. Define a selector matriz S; for j =1,...,2™ as an m x m matrix
where the (i,k)-th entry is defined as

0i k- Lick
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where K = 07'(j), 6 x is kronecker’s delta function and L;cx is an indicator func-
tion that is equal to 1 if 1 € K.
S; can also be defined as being

S;=diag(C~'(j))

As an example of a selector matrix, if m=2, K={1} and j= o(K)=2 then

10
(a0

Now, in matrix notation, the j-th term of ~; will be given by
exp(tr[Z1.4.Z1.4.©] + tr[Z1..L1. Z1.4. A] + tr[diag(z:).S;.A])

where j = o(K) for a given element K of P(M) and where Z;.; is the matrix
formed by the first ¢ rows of Z. Of course, the size of L; was changed here
because we only consider the first ¢t rows of Z and the whole matrix Z. There-
fore, Ly is now of dimension ¢ x t instead of T x T.

Using these notation, it is easy to see that the kernel of the distribution is the
first element of ~7 where 1 = p(¢) and ¢ is the null set (see appendix B to see
how ¢ is mapped into 1). Moreover, the FOMMVRB density is equal to

1
p(Z]©,A) —m-%(@(qﬁ))
Now, a central result of the paper.

Theorem 1. If one integrates any element of ~; with respect to z; one will
obtain a linear combination of ~; 1.

Corollary 1.

Z Vi =AY

where A =ai,...,aj, ..., abn] and where we refer to coefficients of the linear com-
bination of v(j) as a; with j= o(K) for some K € M(P).
Moreover the (p, q)-th entry of A is

A(p.g)=exp| > 04 > N+2. > 6
ieJ jeEKNg €T, JFIeT
where p= o(K) and g= o(J).

As an illustrative simple example that will clarify some of the ideas, let us first
consider the univariate FOMMVB case. Since m =1, the augmented kernel vector
is of size 2 x 1

exp([ZiZl zT] O+ [ZLQ 27.27,1} .)\)
exp( {Zizl zT] 0+ [zt—l—ZtT:z 27.27,1} .)\)

Y=
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by using some earlier obvious notation, we can write 4, more compactly as

B exp(y".0 +w".\)
M=\ exp(yh0+ [z + w]N)

Now, let us integrate ~; with respect to z;
B exp(y".0 +w'.\)
S = 2 (oxptas oy

exp([ze+y' .0+ [zrz1+w' TN

Zt

_ e[y T 0+ TN Fexp(y Lo+t
o \ep([THy 0+ [Tzt w ) Fexp(y O+

_ el exp(y Lo+ [z +w TN Fexp(yt O+ w L)
o\ e Phexp(yt Lo+ [z w ) +exp(yt Lo+ w! L)

(1 e exp(y' L0+ w' L))
N 1 e/t 7 exp(y“l.ﬁ—i—[zt,1+wt’1}./\)

= Ay
1 €

This simple example shows that even in the univariate case, the analytic compu-
tations might be quite complex.

Now we specifically saw how the integration operation is carried out in prac-
tice.

To clarify the framework even further, we shall give the analytic results for the
bivariate case. However, we will not show the details of the computations for
problem of space.

Here m =2 and therefore each =, is of dimension 4 x 1.

Therefore

exp(yi.0" + y5.0% + wi A" + wh A2 + 2u".0'2)
exp(y}.0" + yb.0% + [z01 + wi] A+ wh A2+ 2ut.012)
exp(yf.0" + y5.0% + wi A + [z, + wh] N2 4 2u".0'2)
exp(yi.0t + y5.0% + [Zt,l + w'{] A+ [zt,g + wﬂ A2+ 2ut.0'2)

Y=

where, in an obvious notation, u' is actually uf 5.
As earlier, ZZt v = A.v;_1 where the reader can verify that the matrix con-
taining the coefficients of the linear combination is given by

1 2 1 2 12
1 eé‘ eG eG +6-+260
1 e91+)\1 e92 e01+92+2912+)\1
1 eel e92+)\2 e01+92+2912+>\2

1 ef' AL @fPHAP G007 2012 4N 4N
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3.3 Marginal distributions

In this subsection, we are interested about marginal densities of the form p(zy, ...,
z;) for t = 1, ..., T. Each one of those densities is obtained by integration over
Ztd 1y ooy 2T

We are interested about densities of that form because our goal is to describe
the conditional distribution p(z¢|2z:—1). In subsection 3.5, we will show the markov
property, i.e. p(z¢|zi—1, ..., 21) = p(2¢|2:—1). However, here, we will concentrate on
the quantity
p(Z1, veey Rt—1, Zt>

p(Zh ey Zt_1>

p(zt‘ztfla e Zl) =

We see that the conditional distribution can be obtained by the ratios of two
marginal densities of the form p(zy, ..., z;) for t = 1, ..., T. Being able to write
those quantities in closed form will be helpful for the rest of the paper.

Proposition 1. FEach marginal density of the form p(zi, ..., z;) can be written as
a linear combination of the augmented kernel vector v(Z) or ;.
p(21, ..., 20) =bi.y/ Kt

where Kr=Kp(©, A) is the constant of integration of Z.
Moreover, the coefficients of the linear combination are given by the following
recursion

bt—l — Al.bt
with the boundary condition
bT =€

where ey is the first column of the identity matriz Iom.

3.4 The constant of integration

Let Z, denote one possible Z matrix among the 2™ possible Z matrices that
could have occurred. The constant of integration is then, as the reader remem-
bers, will be equal to the sum of the kernel over all those 2™ possibilities.

2Trn,

Kr(©,A) =) exp{tr[Z].Z;.0] + tr[Z[.L1. Z. A1)}
k=1

Doing the integration over all 27™ possibilities is intractable in most practical sit-
uations. However, since this integration can be carried out by integrating succes-
sively over z;, we can resort to the augmented kernel vector in order to carry out
that integration.

Proposition 2. The constant of integration can be obtained from the relation
Kr(©,A)=el. AT "k,

with k= Zim Yi(k) with k= o(K) for some K € M(P)

Corollary 2. The vector k; follows a first-order difference equation

K= A.Klt,1
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with the initial condition Kk, = Zim Y1 (k) = Zk; A wy (i-e. the sum of columns
of A).

The constant of integration of different sample size is just the first element of
that vector

Ki(©,A)=e1.K;

Now we will illustrate with some simple examples.
In the univariate case

K1 = Z T
_ Z exp(z1.0)
- exp(z1.0 4+ z1.\)

_ e +1
et

and therefore a sample of size 1 has the following integration constant

Krl(g,)\) = 6/1.K/1
— 66—1—1

A sample of size two has the following integration constant

. 1 ef e +1
Ky(8. ) = ei.( 1 ef+ ) ( NS )

_ e20+A 1 2ef 41
- FI e20+2A+ea+A+ea+1
= et 420 11

For instance Kj(6, \) = e+ 4 2e4013% 4 34020 4 3630423 4 Ge3fHA | 42044 4
e + 60 + 5ef 4 1.

This gives an idea of the complexity of the computations and at the rate at
which (0, \). (This can be given by the spectral radius of A).

For the bivariate case

K1 = Z Y1
21

exp(21,1.0" + 21,2.02 + 221 1.21,2.0"%)
_ Z exp(z11.0" + 21,2.0% + 21 1. A + 221 1.2 2.012)
exp(2z1 1.0 + 21 9.0% 4+ 21 2. A2 + 221 1.21 5.0')
exp(z1 1.0+ 21 9.0% 4+ 21 1. N + 21 2. 0%+ 221 1.212.012)
Q0071201 | 0t L 67 g
e€1+92+2912+)\1 + e01+)\1 + e92 + 1

Z1

1,02 1232 1 2,32
e9 +0 42072+ e'9 e'9 +2A 1
1192099124 \14 )2 1,31 2,32

e0 +0°420°F X+ et‘) +A e9 +A 1
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Remember that the integration over z; is actually over (1, 1), (1,0), (0,1) and (0,
0). Therefore K{(©,A)=ef +0°+207 £ o0 4 o0 1 1,

Similarly
[(2(@, A) == ei.A.K’,l
1 2 1 2 12
1 & Q0 a0 +62+26
1 1 2 1 2 12 1
1 e HA b a0 +6742012 42

1 e01 e€2+)\2 e91+92+2912+)\2
1 el TAL @7 HAT Q01402420124 AT 40
91+92+2912 01 02
e +e” +e” +1
1 2 12 1 1 1 2
01+92+2912+)\2 01 02+)\2
e +e” +e +1
1 2 12 1 2 1 1 2 2
eG +60°+20 "+ A"+ X _|_eo9 +A +e9 +A +1

1 2 12 1 2 1 2 12 1 1 2 12 2
_ Q201202401 TEN NS | 9 2014074201240 | 0 014262420124\
1 1 2 2 1 2 12 1 2 1 2
We will not give the result for K5(®, A) since it will take too many lines to write
it down.

Now that we have the constant of integration in closed form, it is straightfor-
ward to write the likelihood of the model in closed form.

3.5 Transition probabilities

As already explained in subsection 3.3, computing marginal densities of the form
p(z1, ..., z;) will easily yield the conditional distribution
p(zl, veey Zt—1, Zt>

p(zlv tey Zt71>

p(zt‘ztfla ) Zl) =

From that, we easily see that

b~ K
p(ze|ze-1, ..., 21) vt/ Kr

~ bj_ivi-1/Kr
bi_1.7Vi-1
And we already mentioned that p(z¢|zi—1, ..., z1) = p(z¢/zi—1). We shall easily
prove it!
Proposition 3. z; is markovian, i.e. p(z¢|zi_1,..., 21) = p(2¢|2¢_1). Moreover, the

markov process formed by z; is non-homogeneous.

In the previous proof, we explicitly computed the formula for the conditional
density p(z¢|zi—1). We will summarize that in a proposition.

Proposition 4. Define (; as a 2™ x 1 vector whose j-th entry is given by
Ci(j) =exp(tr[z{.2z.0] + tr[z{.z,—1.A] + tr[diag(z:).S;.A])

where j = o(K) for the set K that is mapped into z; through o~ 'oC.
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¢t is a function of z; and z; 1 and can therefore be written as (i(z; 1, z¢).
Also, define & as a 2™ x 1 vector whose j-th entry is given by

&(j) =exp(tr[diag(z:).S;.A))

where, again, j = o(K) for the set K that is mapped into z; through o= oC.
& is a function of z; and can therefore be written as &/(2;).
Then the conditional density p(z;|z;_1) is given by the following formula

p(zt‘zt—l) = bé-Ct/bLLft—l

Moreover, the 2™ x 2™ matriz of transition probabilities P, contains at its (i, j)-th
entry

Pi(i,j) =b;.¢(C1(i),C71(4))/bi—1.&1(C71(0))

As a simple example, let us consider the univariate case.
The two vectors {; and &; are respectively

C — eXp<Zt-9+Zt.Zt,1.)\>
' eXp<Zt-9+(Zt+Zt.Zt,1).)\)

&= ( exp(lzt.)\) )

Using index notation over k=1, ...,2™, &(1) =1 and &(2) = exp(z;.A). Using the
notation over Z, we see that &(z;) = (1, exp(z:.A))" and Ci(zi—1, zi—1) = (exp(z:.0 +
Ze.2i—1.N), exp(2e.0 + (21 + zp.20-1).A) .

The conditional density p(z;|z;_1) is now given by the following formula

be(1).exp(ze.0 + ze.26-1.A) + bi(2).exp (2.0 + (26 + 20.201).A)
btfl(l) +bt,1(2).exp(2t,1.)\)

p(Zt\Zt—l) =

Now, replacing z; and z; 1 by their possible binary values, we obtain a matrix of
transition probabilities of the following form

be(1) 4 b:(2) be(1) 4 be(2)
bi—1(1) +b:-1(2) be—1(1) + by —1(2).€*

P =
bt(l).e6+bt(2).e‘9+>‘ 1),5(1).‘36—}»‘—I—bt(Q).ee—}QA
be—1(1) +b:—1(2) be—1(1) 4+ br—1(2).e*

where the configuration in P; is through our usual mappings, i.e. C(0) = 1 and
c(1)=2.

We can easily see that the rows sum to one after replacing the b,_;(.) coeffi-
cients as the corresponding linear combination of the b;(.) coefficients.

We can also give formulas for the bivariate case. We begin by writing the for-
mulas for ¢; and &;

exp(zt,lﬂl + Zt’2.92 + Zt,l.Zt,Ll.Al + 2t,2-2t71,2->‘2 + 22t,1-zt,2-912)
Ct — exp(zt’lﬂl + Zt,2.02 + [Zt,l + Zt,l.Zt,Ll].Al + Zt,2.2t,1,2.A2 + 22t,1-2t,2-912)
exp(zt’lﬂl + Zt,2.02 + Zt,l-ztfl,l)\l + [Zt,z +Zt’2.2t,1’2].A2 + 22t,1-2t,2-912)
exp(zt71.91 + Zt’2.02 + [Zt,l + Zt71.Zt_1’1].>\1 + [Zt72 + Zt’Q.Zt_LQ].}\Q + 2Zt,1-2t,2-012)
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and

1
exp(ze,1.\")
exp(zt,2.1?)

exp(ze 1. A + 202.0%)

&=

We will not give here explicitly the formulas for p(z;|z;_1) and P, but it suffices
to say that P; will have the following form

z1 (0,0) (1,0) (0,1) (1.1)

Pt,1,1 Dt.1,4

Pt,a,1 Dta

where to get each of the p,; ;. we replace z; and 2z;_; by their values in the for-
mula of p(z|2z;_1).

For the actual computation on a computer, it is more straightforward to use
the formulas in proposition 4 for the general case.

4 Volatility clustering

4.1 Motivation

A wide array of time series data is characterized by volatility clustering. At a
given date, the series shows an increase in volatility that remains for a given
number of periods and then subsides, forming a “volatility cluster”. Those clusters
could manifest themselves several times in a given series. Such phenomena cre-
ated the need to model the underlying volatility of time series in a dynamic
(autoregressive) way which was an impetus behind the creation of volatility
models such as GARCH and stochastic volatility. For more details, consult
[Bauwens et al., 2006] which is a survey of multivariate GARCH models. If
volatility can be thought to be showing jumps and varying in a non-smooth way,
then markov switching (also know as hidden markov or markov mixture) models
could be used to model the phenomenon.

This section concerns itself with the case when volatility clustering is thought
of as a discrete latent phenomenon, i.e. in the markov switching case. The objec-
tive is to show how to generalize markov switching volatility models to the multi-
variate case. In a previous section, I introduced a general framework for extending
the markov switching model to a multivariate setting. Here, we present an illus-
tration of that methodology in the multivariate volatility modeling framework.

I will begin by a simple illustration that will show the difficulties and prob-
lems and that will pave the way for the rest of the paper.
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Motivating Example
For instance, a quite rudimentary model is the following. Let y; be the vari-
able of interest,

?Jt: O-Zt-gt
StNN(O, ].)

and z; is a binary markov with the matrix of transition probabilities P and where
state 1 stands for low volatility and 2 stands for high volatility, i.e. oy < os.

This model is a simple markov switching model that can be estimated in a
standard way (see e.g. [Hamilton, 1989|, [Kim and Nelson, 1999]).

It is unclear how to generalize the previous model to the multivariate case.
Let y; be a p x 1 vector.

e Strategy 1

The most straightforward (and perhaps the less attractive) way is the following
Y= 2;5/2.&}

€tNN(0, Ip)

and z; is a binary markov with the matrix of transition probabilities P. Eit/z is

the cholesky decomposition of the covariance matrix 3.,. The classification of
high and low volatility clustering is unclear in this case because the two matrices
31 and X5 are not readily ordered.

One way to get a clearer picture is to use the special decomposition of a
covariance matrix into a diagonal matrix S containing the standard deviations
and a symmetric matrix R containing the correlation coefficients as in e.g.
[Barnard et al., 2000] and [Pelletier, 2006|

¥=S5R.S

Another shortcoming of that approach is that the change of volatility must occur
in all variables at the same time (we shall refer to that phenomenon as concomi-
tant clustering).

e Strategy 2
A second modeling strategy is the following
Yt,i =0z -t
eri~N(0,1)
and for i # j
Corr(er,i,e0,5) = Or.00-pi

where 0, ;= 1{t =t'} is kronecker’s delta and p; ; is the (i, j)th correlation coeffi-
cient.

Each z;; is a binary markov chain with the matrix of transition probabilities
P, and each two chains z;; and z; ; are independent for i # j.
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I concatenate all the chains z;; in a global chain z, with 2?7 states in the fol-
lowing manner.
p
P-Qr
i=1

This framework solve th concomitant clustering problem in the sense that if a
variable 7 experiences a surge in volatility, it does not necessarily mean that vari-
able j # i is experiencing the same surge. On the other hand the model assumes
that surges in volatility in different variables are necessarily independent. This
assumption is quite restrictive in many cases. For instance, in financial markets, a
surge in volatility can be interpreted as an increase in speculation and that could
occur simultaneously in different variables. Hence the necessity to relax the inde-
pendence assumption.

e Strategy 3

We need to relax the assumption of independence, yet we need a parsimonious
model that is tractable. We apply the strategy of the previous chapter.

Yt,i =02z ;+Eti

St,iNN(071>
and for i # j

Corr(ft’l‘, 8t’,j> e (st7t’.p’i,j

where 0; ;= 1{t =t'} is kronecker’s delta and p; ; is the (i, 7)th correlation coeffi-
cient.

The matrix Z of latent variables (i.e. the markov chains in the previous
strategy)

is a first-order markov matrix-variate bernoulli with parameters ® and A of
dimensions p x p respectively.

Z~MB(©,A)

The advantages of that representation is that the dependence between the latent
variables is taken into account in a very straightforward manner. For instance

e O(i, j) describes the dependence between the respective latent volatilities
in variables i and j, i.e. ©(i, j) tells us how likely a surge in volatility in
variable ¢ be accompanied by a surge in volatility in variable j.

e O(i, i) describes the probability structure of the latent volatility in each
variable i, i.e. (i, 1) tells us how likely a surge in volatility in variable i is
to occur.
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e A(i, i) describes the dynamic structure (conditional heteroscedasticity
structure) within each latent volatility in variable i, i.e. A(i, i) tells us how
likely a surge in volatility in variable 7 is to be followed by hight volatility
in that same variable.

The matrix A is diagonal whereas © is just symmetric (if it is diagonal, then the
latent volatilities are independent of one another.)

4.2 Model and Inference

Inference in multivariate volatility clustering model can be considered from both
the classical and bayesian point of views.

From the classical point of view, estimation would typically require use of the
EM algorithm of [Dempster et al., 1977]. However, in this paper, I shall limit
myself to the explicit description of the bayesian approach. I shall describe a
hybrid gibbs/metropolis sampler for drawing from the posterior of the model. I
shall also address some computational issues relating to the matrix-variate
bernoulli distribution.

4.2.1 The model

The observables of the model are a length 7' time series of m x 1 vectors y;, for
t=1,....T. Put the observables in the matrix Y of dimension 7" x m.
The unobservables are

1. A matrix Z of latent variables of dimension 7" x m.
2. The parameters of the model which comprise
a. The m + M parameters of the matrix-variate bernoulli distri-
bution which are included in the matrices m x m matrices ® and A.

b. The 2m + m(m{l) parameters describing the covariance structure.

Those include 2m parameters describing the different variances in

m(m —1)

each volatility state for each variable and parameters which
are the entries of the unique correlation matrices across all the

states.

Therefore, the model contains a total of m? + 3m parameters which grow at a
polynomial rate with the number of equations. (The traditional approach of mul-
tivariate markov switching models exhibits an exponential growth of the number
of parameters if the hypothesis of independence is dropped. The advantage of our
approach is the exhibition of a polynomial rate with an arbitrary pattern of
dependence across the different equations.)

The priors that will used are the following. For each one of the different
parameters in the matrices ® and A, a normal prior is assigned that is centered
and has a huge standard deviation. For instance

QiNN(O,O'gi>
Qi’jNN(O, O'gi,j>
)\iN./\/'(O, Uiz)
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The variances in those priors should be quite large for them to be non-informa-
tive. Typically, they should be chosen to be 10* or higher.

There corresponds a set of two variances for each variable y;,; which are
respectively the variance of the high volatility state and that of the low one.

2
Ok 1

for k=1,2 (state index) and i=1, ..., m (variable index).
We shall pick an inverse gamma prior for each one of those variances

0o 0
ot~ 16 (% 5L

The superscript 0 indicates that the corresponding quantity is a hyperparameter
(i.e. a parameter of the prior distribution).

For a detailed discussion of inverse gamma priors see e.g. [Robert, 2007]
[Bauwens et al., 1999] and |[Gelman et al., 1995]. s ~ ZG(a, f3) if its density is

%.s_mﬂ)exp( — 5.3_1).

Finally, for the prior of the correlation matrix, we adopt a strategy suggested
in [Barnard et al., 2000] and use a uniform prior.

p(R) 1
The uniform prior here not cause the posterior to be improper because the space
of correlation parameters is a compact subset of the hyper cube [ — 1, 1]w
which is itself a compact subset of the Euclidean space RW. See

[Rousseeuw and Molenberghs, 1994] for a discussion.

It is not necessary to use those same priors for the bayesian inference
approach. They seem to be the ones to give the most straightforward way to
sample from the posterior. Inverse Wishart posteriors for R are preferred when
they can be obtained.

4.3 The MCMC Algorithm

In this subsection, an MCMC algorithm is described for taking draws form the
posterior of the model. It is a gibbs sampler that contains a metropolis-hastings
sweep. See [Chen et al., 2000] or [Robert and Casella, 2004| for a review of the
MCMC methodology.

The algorithm is describe in the following way. Repeat the following iteration
for M times. Drop B iterations at the beginning (burn-in period). Then the
remaining (M — B) iterations are the draws from the posterior. In the following,
we denote the n-th draw of, say, parameter 1 as ™.
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Algorithm 1. The Gibbs Sampler

1. Initialize the sampler with

ZO, @0, A0 0 g0 RO
2. At iteration n, draw
zZm @M A sgn), sg”)’ RrR™
consecutively in the following order

a. Draw a matriz of latent variable Z™ from the distribution
p(ZM|@n=1 A=1), 3(1"_1), Sg"—U, R"1.Y)
b. Draw the parameters of the matriz-variate bernoulli from
p(O) A Z ()
c. Draw the variances for k=1,2 from

P (82”)

d. Draw the correlations from

Z(n)7 Y>

p(RO|s( 5, 70 Y)

I shall investigate the different sweeps in the Gibbs sampler in more detail.

4.4 Computations for the FOMMYVB distribution

Taking a draw of Z™ is done in the following way. Since the rows zt(”) of Z"
constitute a markov chain, they could be sampled in the following way. Using the
closed form formulas for p(z1) and p(z;|2z;_1), those densities can be readily com-
puted from ™ and A"

Therefore, using the transition probabilities and the previous draws of si, a
filter as in [Hamilton, 1989] can be readily constructed. That filter! will give the a
posteriori probabilities p*(z;) and p*(z]z;_1). Sampling from p*(z;) and
p*(2¢|zi_1) gives Z™. Computing the a posteriori p*() densities from the p() den-
sities shall not described in detail because it is standard in markov switching
models. (See e.g. the last chapter of [Hamilton, 1994| or the detailed exposition of
[Kim and Nelson, 1999].)

1. Standard filtering software should be modified in our case here because the markov chain is non-
homogeneous and therefore, at each period ¢, the updating uses different set of probabilities and not the
same ones.
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On the other hand computing p(z;) and p(z;|z;_1) is not standard and it uses
the closed form results exposed earlier. They should be done in the following way.

First we need to explicitly be able to do computations with the mappings C
and o described earlier. Those mappings should be coded (and stored once and
for all throughout the whole MCMC iterations) in the following way.

Algorithm 2. Computation of Mappings C and o

As an input to this step, give m, the number of latent variables.

The output is a matriz X of dimensions 2™ x m. (This is shown in detail in
appendiz B). The matriz X allows us to compute o and C because it has the prop-
erty that C(X(j,:)) =J, i.e. to compute the inverse image (C™') of the integer j
(for j =1, ..., 2™), simply take the jth row of X. Also, to compute the inverse
image (0=") of the integer j, simply construct the set of the columns corresponding
to the non null entry of the jth row of X.

Now that we know how to do calculations with the mappings C and p, we can
show how to compute the a prior: transition probabilities necessary in the fil-
tering step of the gibbs sampler.

Algorithm 3. a prior: Transition Probabilities in the Gibbs Sampler
As an input to this step, give the matrices ®™ and A™.

e Compute the matriz A™ from ©" and A™ wusing the mapping o using
the following formula

AM(g(K), o(T))=exp| Y 014 Y M2 > 4

e jekng ieJ,jFied
o  (Compute the sequence of vectors by using the following recursion
bt—l :A(n)’bt

where the recursion is initialized by by = ey the first column of the identity
matriz Ioym.

o Compute the constant of integration Kj(wn)

Kr= e{.AT_l.nl

where Ky is the sum of the columns of A™ and e, is the first column of the
wdentity matriz Iym.

e Compute the two sequences of 2™ x 1 wectors & and {; given by the for-
mulas

Ci(j,1) = exp(tr[z{.z.0]+ tr[z{.z;,_1.A] + tr[diag(z:).S;.A])
&(j7,1) = exp(tr[diag(z).6;.A])

where & ;=diag(C~'(j)).
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Using the previous computations, the a priori transition probabilities are

p(zt\ZtA) = bé-Ct/bé—Lftfl

and the initial density is

p(z1) =bi.&/ K72

Now we turn to drawings from p(©™, A™|Z™) This conditional density is pro-
portional to the product of the matrix-variate bernoulli density p(Z™|@™), A*)

and the product of the normal priors on the entries of ®™ and AM™. A
Metropolis-Hastings step is used to draw from this density.

4.5 An Illustration in detail: The Bivariate Case

4.5.1 The covariance structure in detail

In the bivariate case, Y= (Yr.1, Y1 2) and z;= (2.1, 2¢,2)".
Y= (Ez,s)l/Q-st
StNN(O, IQ)

1
where (3.,)? is the cholesky decomposition of the covariance matrix X,

2
D= Oz P1,2:0z 1:02 5
zZt 2
OZt,2

>.,=S..R.S.,

Therefore, there are four possible matrices ¥,, (In the general case, there would
be 2™ possible matrices 3., because there are 2™ possible vectors z;.)

2
D _ 01,1 P1,2:01,1-01,2
(0,0) = 2

01,2

2

2
D . 01,1 P1,2:01,1-02,2
(0,1) =
02,2

2

2
) _ 021  P1,2.02,1.012
(1,0) =
01,2

2

D _ 021  P1,2:02,1.02,2

(1,1) = 2
02,2

In the previous four matrices 0%7,- stands for the variance of the i-th variable in y,
(i.e. i=1,...,m) and the k-th state of that same variable. Because there are two
states for each variance, i.e. state 1 and state 2, then k=1 or k=2.2



28 SECTION 4

The variances for each state are put in two vectors

2 2
5 — 011 50— 021
1= 2 3 2— 2

01,2 02,2

where s; corresponds to the state coded as 0 (for the whole vector y;) and s, cor-
responds to the state coded as 1.

Note also that

Swo = (0%1 0(%),2
Sao = (03,1 0(%),2
Sty = (0%1 02,2

and that the correlation matrix is

1 p1e2
(')

Note 1. Identification issues for the covariances matrices

I chose here the more parsimonious way where the correlations between the
different entries of v, is fixed.

In that setting, either of two methodologies can be adopted. We will illustrate
those two methodologies in the bivariate case since it is clearer in that special
case.

First, either fix the correlation between y, ; and y; o, or fix the covariance. The
covariance and correlation cannot be fixed at the same time because the following
equalities will be impossible

Oyi,y2 — Oy1,y» — Oyi1,y» — Oyi1,y»
01,1012 01,1.022 021.012 021.022

Pyi.y> =

where the denominator correspond to the standard deviations in different states
(01, is the standard deviation of y,; when the state is k and k =1, 2) and where
Py,.y, and 0y, 4, are respectively the correlation and covariance between y;; and

Yt 2.

2. Notice that here there is a slight abuse of notation because if z; = (a, b) then X3 =
<v§+1,1 o2 ) and not (”311 712 ), i.e. we are coding the state 0 by 1 and the state 1 by 2.
Oh,2

2
Th41,2
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4.5.2 The priors and conditional posteriors of the covariance parame-
ters

The prior on p; 5 is the uniform distribution on [—1,1], i.e. p(p12) = %

The priors on 0,27,g are ZG(

0 0
Vi,i Sk,i
27 2

>, i.e. they have the densities

From an inferential point of view, conditioning on Z is equivalent to dividing the
sample for each series into two series.

For instance, the first variable y; is divided into two subsamples and ¥, is
put in one of those samples if the z;; is 0 or 1. Let n;; and ny; be the sizes of
those two subsamples. Therefore ny; corresponds to the size of the k-th sub-
sample of variable i (k=1,2 and i=1,...,m)

Let sy, = Z?il y3 ; (i.e the sum of squares of the observation in the k-th sub-
sample of variable 7).

Note that, in the case of zero correlations, the posterior of 0%7,- conditional on

everything else is
e <nkz + Vl[c],i Skt 52,i>

2 ’ 2
we can define

1 0
Nk = Nii+ Vi,
1 _ 0
Ski = Skt Sk
vhi

2 — V’“’i+1 1
p(of ;|everything else) = —1(0121@) ( ’ >.exp < — ;kél >
. o

This shall be proved in the next paragraph.

A Proof for the posterior formulation conditional on the states and
its parameters

We are going to attempt to write the likelihood conditional on Z (and its
parameters ® and A) up to a constant of proportionality. Remember that if the
state realizations are known, then the likelihood is equivalent to that of a linear
models on different subsamples.

As earlier 7 is the index set {1, ..., 2™}. Le., in this case, Z = {1, 2, 3, 4} that
corresponds, by the mapping C~! to Z = {(0,0), (0,1), (1,0), (1,1)}. Let n, for i €
7 be the number of occurrences of each vector in Z. That is T=73._, n;. Let y®
be n; occurrences of vectors y;.
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Then the likelihood of each one of the samples indexed by i is given
i = —1 1 vae ;
y ) o [ 1B 2exp < — 5y )y )>
j=1

and therefore p(Y'|.) =], ., p(y].).
Multiplying by the priors we obtain the posterior

p({Ze 0} Jorr(r) TT TT wlotin) TT w51

i'eM ke{l1,2} i€T

A Note on the quadratic form z’.X 'z

¢ Y lx = ' (S.RS) 'z
' ST R 'S '

3

- mL Y

where |R| is the determinant of R and M, j(R) is the (i, j)-th minor of R. Also
x; is the i-th entry of the vector «.
This signifies that, when the quadratic form is considered as a function of «,

the coefficient of 27 is %(:‘) and the coefficient of the cross products z;.z; is
2:40;(‘1;)‘ When, the quad;étic form is considered as a function of each one of the
standard deviations o; for i = 1, ..., m, then the coefficient of 1/07 and 1/0; are
respectively
Variable Coefficient

1 2 Mii(R)

o7 - |R|

1 x; M ;(R)

> 2x,.; o IR

This proves that in the case of non-zero correlations, the posteriors for 0,%7,- are no
longer inverse gamma and in that case, a metropolis-hastings step is utilized.

5 An empirical illustration

[ consider here a part of the dataset used in [Audrino and Trojani, 2006] and it
was download from the Journal of Applied Econometrics data archive. I use daily
returns obtained from three stock market indices that respectively the French
CAC40 index, the Swiss SMI Index and US S&P500 Index. The daily price data
from the return series were constructed span the period from January 1, 1990 to
November 4, 2002. Our sample consists of three variables with 3350 observations
each.
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In the following figures, the return series is showed with the filtered probabili-
ties of the state of lower volatility estimated from the multivariate markov-
switching model considered earlier with diagonal covariance matrices.
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By plotting the three filtered probabilities next to each other, we can see that
this seems to indicate that a single latent binary variable for modeling the three-
dimensional returns vector is inadequate at best. For instance, the mean absolute
deviation between the filtered probabilities series between the Swiss and US is
0.3, not high enough to warrant independence and not low enough to assume a
single latent variable. (It is 0.15 between the French and the Swiss and 0.28
between the French and the US).

W

,,m
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T L

500 000 2000 2500 2000 300

Figure 4.

6 Conclusion

The basic setup of the paper can be extended into several directions. One topic
for future research is relaxing the restriction to the two-state model. What is
needed is a matrix-variate multinomial distribution for a more general use of the
methodology in this paper. This seems promising for future research. Since a nat-
ural representation of a vector of multinomial variables can be a matrix of indi-
cator variables coding the states, the matrix-variate bernoulli distribution can in
fact be used to model multinomial variables. The ideas are going to be further
explored by the author in future work.

Another investigation are is model selection. Due to the big number of pos-
sible alternative modeling possibilities, automatic selection procedures are of great
interest and very difficult to carry out. This might prove a quite intriguing and
definitely challenging problem for future research.

On the purely computational side, a study of the efficiency of different MCMC
algorithms constitutes an interesting complementary study to be performed in the
future. One intriguing theoretical aspect for further study is the non-homogeneity
of the latent markov chain underlying the markov-swithcing model. It should be
investigated in several directions.

On the application side, the multivariate volatility cluster special case could
be augmented in order to incorporate more complex mean dynamics.
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Appendix A Proofs

Proof. Theorem 1

Let us integrate some element of «; with respect to z;, say v:(o(K)) for some
K € P(M). If we obtain a linear combination of ~;_1, then the rest of the proof
follows by induction.

~¥:(0(K)) is equal to

eXp[Zm: YO (e wh) M+ > wh A 42 zm: ul .00

i=1 jeK JEM\K i=1,5%i

which is also equal to

exp[ Z [Zt,i —+ ylt—l}ﬁl —+ Z [Zt,j + 2t jRt—1,j5 —+ U;;_l}AJ —+ Z [Zt,j-zt—l,j +
=1 JEK JEM\K

w;_l].)\j-i-Q Z [Zt,i.Zt,j+u§31].9i’j]

i=1,j4i

or equivalently

expl Z (20 + w0+ [mizmen + w4 Z SN+
ieM e

2 Z [Zt,i.zt,j+U§31] .9“]

iEM,jFieEM

Now, integrating over z; is done by summing over all 2 different vectors z; that
can occur. Every such z; is given by C™'o o(J) VT € P(M).

As a preliminary step, let us replace one z; (say the one corresponding to
C~'o o(J) for a given [J) by its value. Such z; contains 1 over i € J and 0 over
over i € M\ J. Therefore, the kernel entry corresponding to K evaluated at the z
corresponding to J, i.e. ¥(0(K))|z,=c-100(7) can be written in the following way

keJ tEMNT jEKNT

2 Y [1 +u§;1} .em} +
ieMﬁJ,j;&iej

e}q{ > { S A T S FUNTE SRy

keM\JT | ieMAM\T iEMNM\T ,jEie M\T

> { Y YT w2 > uﬁ,ﬁ.e"’j”
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Now, of course MNJ =T and M N (M\JT)=M\T because J C M. And also
replace redundant summation operators such as ), - > .~ by simply > .,
we rewrite ’Yt(Q(IC))‘zt:C*loQ(J) as

exp [ Z 0" + Z N+ 2. Z Hi’j] .eXp [ Z yimle + [2e-1 + wf_l} A+

iedJ JEKNT i€J,jFieT eJ
2 Z uj o+ Z TR Ty ) Z uj 0
€T, jFIET teM\T ieEM\T,jFIEM\T

where we have factored out the therm exp [ dics 0 + Zje,mj N+ 2. dics iticT
9"’7} because it does not depend on the data Z. Now, grouping the terms over [J

and those over M\ 7, we rewrite ¥,(0(K))|.,—c-100(7) a8

exp[ Z 0" + Z Mo+ 2. Z Hi’j] .exp[ Z YO 4wt 4 Z

ieTJ JEKNT €T, jFIET iEM JET
2 M2 t=1 gi,j
t—1,5- UZ’] .
iEM,jFiEM

Now the formula is very clear. On the right, the exponential term is simply
Yi-1(0(J)). On the the left, the exponential term is simply a multiplicative form
that does not depend on the data.

Therefore, replacing z, = C~! o o(7) inside ~;(o(K)) yields the following for-
mula

»yt<@<ic>>zt:clogm=explz i Y N2 Y eﬁﬂ‘].mww

ieJ jJEKNT €T j#FIeT

Now, summing over z; inside 7;(o(K)) is equivalent to summing over all z;=C"'o

o(T) VT € P(M).
dowlek) = > wle(k)

z JEP(M)
= Z exp Z 0 + Z N +2. Z 07| ~Ai—1(o(T))
TEP(M) e jekng ieJ jEieT

Therefore, we see that integrating any element of 4, say ~(0o(K)), will yield a

linear combination of ~; ; where the coefficients are equal to exp[ Ziej ot +

sexns V]
O

Proof. Corollary 1
The proof follows easily from that of theorem 1.
All we have to do is write the identity

S oK)= exp[Z b D N2 S 9’*]‘]-%1@@»

z TEP(M) ieJ jekng €T, jFI€T
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in matrix form.

]
Proof. Proposition 1

The proof is carried out by induction.

Begin by writing p(z1, ..., zr) as ep.yr/Kp. This simply true because the
kernel of the density of Z is equal to the first entry in ~7.

The first marginal density p(zy, ..., zr) can be written in the form b7.vyy/Kr
with bT =é€.

Let us assume that p(zi, ..., z;) can be written as b;.v;/Kp. We would like to
deduce now that p(zy, ..., z;—1) can be written in the form b; ,.v;—1/K7 and then
deduce the relation between b; and b;_;.

Carry out the integration operation over z;

p(*zla cey Zt—l) = Z p(zla sy Bt—1, Zt)
= Z bé.’yt/K’T
z
= [X’fl.béz Yt
= ijl.bé.A."}/t_l
now, replace b;. A by b;_,
= K7'bi 171
which proves that we can deduce the formula p(zy, ..., 2, 1) = bi_1.v:_1/Kr and
the recursion b,_; = A'.b,. O

Proof. Proposition 2

Remember that we can obtain p(z;) from p(zi,..., zr) by way of proposition 1,
i.e. p(z1)=bi.v1/Kr

Integrating over z; will yield 1. }°_ p(z1) =1 and therefore

> p(z) =1
= Krlbi) m
z1
And therefore K7 =b] Zzl o] O

Proof. Corollary 2
The proof follows easily by induction from the application of the formula

Kr(©,A)=e1. ATk

Proof. Proposition 3
We will analyze the ratio b;.;/b; 1.7 1
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Write b;_1.7v;—1 as Zizl bi—1(k).~vi—1(k) and then divide it by the scalar
~i-1(071(9)) (i.e. the kernel of a density that has ¢ — 1 observations only)

/ _ Zimlbt 1(k).ye-1(k)
bi_1.v1 = Yi—1(0(0))

_ Cye=i(k)
- th )]

(note here that the set of indices k for k=1, ..., 2™ are given by the mapping k =

o(K)).
The ratio v, 1(k)/~v:-1(0(¢)) can be easily proved to be equal to
(k) -
Vit = exp Z yimle + Z (ze-1,; + wih)A + Z Wi+
Fytfl(g(¢)) i=1 je]C JEM\K
M
2 ST S Y (s )Y -
1=1,j#1 JjE€P
Z wt IA] 2 Z t 191,]]
JEM}d? i1=1,5#1
= exp Z (thl,j+w§'71)./\j+ Z wé*l,/\j— Z wé*l,/\j
jek JEM\K jEM
= exp Zzt,m.)\j
| jex

Similarly, we have
. (k)
by = bi(k). ———~
SO )
and the ratio v(k)/v:(0(¢)) can be computed accordingly

7‘12(<<2>>‘ = exp[Zyw+Z (gt w)) M4 Y wh M +2 Y w00 -

i=1 jex jEM\K i=1,j+i
SNou = (za A wi )N = Y Wi =2 Y
i?l g j] jeed jeM\ o i=1,j%i

2:1 JjEK JEM

(u,,] m )'9”

= exp Zzt,9+22t])\]+z,zt]zt 1])\3—1—2 Z 22,50

JEK JeM i=1,j#1

= exp zm: — i .Hi + Z 2 g N+ Z (w§ — wz_l).)\j +2 zm:
i=1,j#i

we see that neither v;—1(k)/v:—1(0o(¢)) nor v:(k)/v:(o(¢)) do contain z,_;, Vj <2
which proves our claim.
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To quickly resume, write the density

Ziil bt(k).exp[zznzl (ztﬁi.ﬂi—l—zt,i.zt_l,i.)\i) +zje)€ Zt,j')‘j+222n:1,j¢i ztﬁi.zt,j.é'i‘j]

izl bt,l(k).exp[z].e,c 2t—1,j-)\j

p(zt|zt71) =

Proof. Proposition 4
The proof follows easily but tediously from dividing both numerator and
denominator of the conditional density by ~:(o(¢)) and simplifying the expres-
sion.
O

Appendix B An algorithm for constructing the
mapping C

There are numerous ways of constructing a mapping C that uniquely pinpoints an
integer in the index set {1, ..., 2™} to one possible occurrence of the vector z;.
Therefore, it is important to explicitly describe a way of doing so.

We propose the following extremely simple algorithm; Construct a 2™ x m

matrix X such that each of its columns is equal to tom-: ® <02i1 ), i.e.

Lyi—1
X(: ,Z) :LQm—i@ < 021‘71 )

L2i71

where 0, is a column vector of size k£ that only contains zeros and where ¢, is a
column vector of size k that only only contains ones.

Each row of X will correspond to a unique possible z; among all possible
unique 0-1 permutations of the entries of z;.

And now define C as being given by the following identity

C(X(j.:)=1J

We will give a simple example to clarify the ideas.
Let m = 3, then there are 2™ different possible vectors z;. The set Z is there-
fore

Z=4{(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)}

The different columns of X are computed in the following way

X(:.1) = L22®<020>

Lo0

(1)

|
— e
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|
_H O, O RO RO

Jai
[N}
N—
Il
~
A
®
N
s e
—_—_ 0 O N~

|
—_ =0 O = = O O

— === O O OO

and therefore

Il
RO R ORFRORO
_—_ O O = = O O
g S T o I o i e R )

Each row of X is a unique z;. The reader can easily check that C((0, 0, 0)) = 1,
C(1,0,0)=2, C(0,1,0) =3 etc...
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To quickly show the connection between C and p, we only need to note that
0~ 'oC maps a row of X (where there are k integers 1) into a set {7y, ..., i, } where

each element of {iy, ..., i} is the column index referring to where the 1 occurred.
E.g.
000 1 o
100 2 {1}
010 3 {2}
110 R {1.2}
“N1looa s T ¢ (3}
101 6 {1,3}
011 7 {2,3}
111 8 {1.2,3}
Similarly, if m =2, then
00
10
=101
11
Here, we can easily see the relation between C and po.
00 1 o)
10 2 {1}
1o |3 2Vl 2
11 4 {1,2}

Appendix C An Economic Example

Example 4. Let y; be a vector of GDP growth data where each component of
the vector corresponds to one country

variable | country |latent variable
Yt 1 U.S. 21
Yt,2 Canada 212
Yt.3 France 23

The model described in the introduction is

@(L)yt: I,th+€t

EtNN(O, 2)
i,
l’l’zt: MQZt,2
H3., ,

where ®(L) is multivariate lag polynomial.
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Let ¢ be the country index. z; is the latent variable describing expansions and
recessions in country 7. Since 2, ; indexes f;, the mean of the autoregressive pro-
cess of GDP growth of country i, p; takes two different values p; ; for j =1, 2,
that is p; 1 if 2,1 =0 and g0 if 2,0 =1. If p1;1 < p; 2, we can say that the state 0
of latent variable z;; corresponds to a recession for country i. We see that the
model is quite flexible and corresponds to the economic discussion in the intro-
duction.



